PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Przewodzące samoprzylepne kleje akrylanowe z napełniaczami węglowymi

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Conductive acrylic pressure-sensitive adhesives with carbon filler
Języki publikacji
PL
Abstrakty
EN
Pressure-sensitive adhesives (PSA) are a group of adhesive-based macromolecular polymers which are characterized by good (satisfying the requirements of industrial) adhesion and cohesion; high temperature stability during use, excellent aging resistance and constant tear strength. In 1935, the concept of self-adhesive glue, wherein the obtained self-adhesive product of the invention R. Stanton Avery, was firstly developed. From many types of adhesives, the most common adhesives are acrylics pressure-sensitive adhesives [1–3]. In most cases, self-adhesive adhesives do not exhibit good conductive properties, whereas conductivity grades are classified in the group of insulators. In order to improve their conductive properties, studies have been conducted on the modification of polymers in adhesive compositions, where at least one of the components exhibited conductive properties (e.g. polymers with conjugated π-bonded polymers along polymeric chains). However, the best effects were obtained by adding conductive fillers such as metal (copper, aluminum), specially modified soot, nanotubes or graphene, carbon fibers, metallized glass and conductive fibers. This allowed the creation of electrically conductive compositions characterizing by conductivity in the range from 10–2 to 102 S/cm. This relatively high conductivity is the result of the percolation of conductive filler molecules into an insulating matrix or tunneling between electrically conductive molecules [10, 11]. Acrylate pressure-sensitive adhesives with conductive fillers have found a number of important industrial applications, especially in the electronics industry. Pressure- sensitive adhesives, such as self-adhesive tapes or adhesive films, are used as heating elements, sensors or conductive gums. Due to their good performance, they can be used to connect solar panels or glue small components in the microelectronics industry. They also can be used to discharge static charges from the surface – used as flexible drainage connections – especially in places where the spark is undesirable and can be dangerous. They are used as heating elements [10, 12, 27].
Rocznik
Strony
887--896
Opis fizyczny
Bibliogr. 27 poz., rys.
Twórcy
  • Zachodniopomorski Uniwersytet Technologiczny w Szczecinie, Wydział Technologii i Inżynierii Chemicznej, ul. Pułaskiego 10, 70-322 Szczecin
autor
  • Zachodniopomorski Uniwersytet Technologiczny w Szczecinie, Wydział Technologii i Inżynierii Chemicznej, ul. Pułaskiego 10, 70-322 Szczecin
Bibliografia
  • [1] A.K. Antosik, Z. Czech, Wiad. Chem., 2015, 69, 111.
  • [2] A.K. Antosik, Z. Czech, Wiad. Chem., 2016, 70, 747.
  • [3] A. Butwin, Z. Czech, ABiD, 2009, 14, 8.
  • [4] Z. Czech, R. Milker, Mater. Sci.-Pol., 2005, 4, 1015.
  • [5] Transparency Market Research; Sealing Technology, 2014, January, 10.
  • [6] Z. Czech, A. Butwin, Wiad. Chem., 2009, 63, 269.
  • [7] Z. Czech, A. Butwin, Wiad. Chem., 2009, 63, 269.
  • [8] Z. Czech, M. Wojciechowicz, Europ. Polym. Int., 2006, 42, 2153.
  • [9] Z. Czech, I.J. Adhe. Adhe., 2007, 27, 49.
  • [10] Z. Czech, A. Kowalczyk, R. Pełech, R.J. Wróbel, L. Shao, Y. Bai, J. Świderska J. Adhe. Adhe., 2012, 36, 20.
  • [11] B. Pang, Ch.-M. Ryu, H.-II Kim, J. Appl. Polym. Sci, 2012, 129, 276.
  • [12] Z. Czech, A. Kowalczyk, R. Pełech, R.J. Wrobel, L. Shao, Y. Bai, J. Świderska, J. Adhe. Adhe., 2012, 36, 20.
  • [13] I. Novak, I. Krupa, I. Chodak, J. Mat. Sien. Let., 2002, 13, 1039.
  • [14] M. Kwiatkowska, G. Broza, J. Męcfel, T. Sterzyński, Z. Rosłaniec, Kompozyty, 2005, 5, 99.
  • [15] S. Kugler, T. Spychaj, Polimery, 2013, 58, 93.
  • [16] Y. Lin, M.J. Meziani, Y.-P. Sun, J. Mater. Chem., 2007, 17, 1143.
  • [17] T. Fukushima, A. Kosaka, Y. Ishimura, T. Yamamoto, T. Takigawa, T. Aida, Science 2003, 300, 2072.
  • [18] H. Zhang, Z. Wang, Z. Zhang, J. Wu, J. Zhang, J. S. He, Adv. Mater., 2007, 19, 698.
  • [19] P. Mayer, J.W. Kaczmar, Two. Szt. Chem., 2008, 56.
  • [20] C. Soldano, A. Mahmood, E. Dujardin, Carbon, 2010, 48, 2127.
  • [21] K.P. Loh, Q. Bao, P.K. Ang, J. Yang, J. Mater. Chem., 2010, 20, 2277.
  • [22] B. Li, W.H. Zhong, J. Mater. Sci. 2011, 4, 5595.
  • [23] H. Kim, A.A. Abdala, C.W. Macosko, Macromolecules, 2010, 43, 6515.
  • [24] D. Waszak, E. Frąckowiak, Mat. Scie., 2005, 813.
  • [25] H.K. Kim, F.G. Shi, Microelectronics J., 2001, 32, 315.
  • [26] Z. Czech, Int. J. Adhes. Adhes., 2007, 27, 195.
  • [27] G.H. Park, K.T. Kim, Y.T. Ahn, H. Lee, H.M. Jeong, J. Ind. Eng. Chem., 2014, 20, 4108. Praca wpłynęła do Redakcji 29 listopada 2017
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-93914bc1-73b6-48e6-a256-088b5e70840d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.