PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Właściwości katalityczne i biomedyczne związków zawierających jony rutenu (II) oraz Rutenu (III)

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Catalytic and biomedical properties of compound containing ruthenium (II) and ruthenium (III) ions
Języki publikacji
PL
Abstrakty
EN
Ruthenium complexes appear in scientific publications mainly as catalysts in the olefins metathesis process. In this review, we want to indicate the research niche regarding the use of ruthenium(II) and ruthenium(III) complexes in other catalytic processes, i.e. polymerization or epoxidation of olefins and depolymerization. We would like to combine the catalytic properties of ruthenium(II,III) complex compounds with their biomedical activity due to the growing problem of drug resistance (including antibiotic resistance). Scientists have been designing new metallopharmaceuticals exhibiting biological activity for several years, therefore this requires a critical review of the literature. The main goal of designing new metallodrugs is to create compounds with new or stronger biological properties compared to free ligands. Ruthenium compounds are considered potential substitutes for known drugs. In particular, Ru(II) and Ru(III) based complexes have reduced toxicity and can be tolerated in vivo. In addition, a wide spectrum of ruthenium oxidation states, a different mechanism of action and the kinetics of ligand substitution increase the advantage over coordination complex compounds based on platinum. In conclusion, in this review, we will focus on the latest reports from the literature on the catalytic properties and biomedical activity of ruthenium(II) and ruthenium(III) chemical compounds.
Rocznik
Strony
569--595
Opis fizyczny
Bibliogr. 61 poz., rys., tab., wykr.
Twórcy
  • Wydział Chemii Uniwersytetu Gdańskiego Katedra Technologii Środowiska, ul. Wita Stwosza 63, 80-308 Gdańsk
autor
  • Wydział Chemii Uniwersytetu Gdańskiego Katedra Technologii Środowiska, ul. Wita Stwosza 63, 80-308 Gdańsk
  • Wydział Chemiczny Politechniki Gdańskiej, Katedra Chemii Organicznej, ul. G. Narutowicza 11/12, 80-233 Gdańsk
  • Wydział Chemii Uniwersytetu Gdańskiego Katedra Technologii Środowiska, ul. Wita Stwosza 63, 80-308 Gdańsk
  • Wydział Chemii Uniwersytetu Gdańskiego Katedra Technologii Środowiska, ul. Wita Stwosza 63, 80-308 Gdańsk
Bibliografia
  • [1] J. Zhu, L. Cai, Y. Tu, L. Zhang, W. Zhang, J. Mater. Chem., 2022, 10, 15370.
  • [2] Y. Xu, C. Li, S. Lu, Z. Wang, S. Liu, X. Yu, Y. Sun, Nat. Commun., 2022, 13, 2009.
  • [3] K.M. Dawood, K. Nomura, Adv. Synth. Catal., 2021, 363, 1970
  • [4] C. Deraedt, M. d’Halluin, D. Astruc, Eur. J. Inorg. Chem., 2013, 2013, 4881
  • [5] H. Clavier, K. Grela, A. Kirschning, M. Mauduit, S.P. Nolan, Angew. Chem., Int. Ed. Engl., 2007, 46, 6786
  • [6] T. Matsuo, Catalysts, 2021, 11, 359
  • [7] T.P. Montgomery, A.M. Johns, R.H. Grubbs, Catalysts, 2017, 7, 87
  • [8] O.M. Ogba, N.C. Warner, D.J. O’Leary, R.H. Grubbs, Chem. Soc. Rev., 2018, 47, 4510
  • [9] M. Retajczyk, A. Wróblewska, Wiad. Chem., 2017, 71, 323
  • [10] S.G. Patra, N.K. Das, Polyhedron, 2021, 200, 115096
  • [11] G.C. Vougioukalakis, R.H. Grubbs, Chem. Rev., 2010, 110, 1746
  • [12] Y. Zhang, S. T. Diver, J. Am. Chem. Soc., 2020, 142, 3371.
  • [13] M Scholl, S Ding, CW Lee, RH Grubbs, Org. Lett., 1999, 1, 953
  • [14] L.K. Johnson, C.M. Killian, M. Brookhart, J. Am. Chem. Soc., 1995, 117, 6414
  • [15] D.W. Sauter, M. Taoufik, C. Boisson, Polymers, 2017, 9,
  • [16] M. Chen, C. Chen, Angew. Chem. Int. Ed., 2020, 132, 1222
  • [17] X. Wang, G.-X. Jin, Chem. Eur. J., 2005, 11, 5758
  • [18] K. Nomura, W. Sidokmai, Y. Imanishi, Bull. Chem. Soc. Jpn., 2000, 73, 599
  • [19] T.R. Cruz, R.A.N. Silva, A.E.H. Machado, B.S. Lima-Neto, B.E. Goi, V. P. Carvalho, New J. Chem., 2019, 43, 6220
  • [20] R.M. Stoop, A. Mezzetti, Green Chem., 1999, 1, 39
  • [21] P. Zawadzki, W. Czardybon, A. Chrobok, Wiad. Chem., 2017, 70, 289
  • [22] Z. Gross, S. Ini, J. Org. Chem.,1997, 62, 5514
  • [23] M. Bressan, A. Morvillo, Inorg. Chem., 1989, 28, 950.
  • [24] D. Chatterjee, Coord. Chem. Rev., 2008, 252, 176
  • [25] R.M. Stoop, A. Mezzetti, Green Chem., 1999, 1, 39
  • [26] T. Takeda, R. Irie, Y. Shinoda, T. Katsuki, Synlett, 1999, 1999, 1157
  • [27] R.I. Kureshy, N.H. Khan, S.H.R. Abdi, P. Iyer, J. Mol. Catal. A Chem., 1997, 124, 91
  • [28] D. Chatterjee, S. Basak, A. Mitra, A. Sengupta, J. le Bras, J. Muzart, Inorganica Chim. Acta., 2006, 359, 1325
  • [29] S. P. áMc Ilrath, Chem. Comm., 2014, 50, 4884.
  • [30] S. Su, L. P. Xiao, X. Che, S. Wang, X. H. Chen, Y. Guo, S. R. Zhai, ChemSusChem, 2022, 15, e202200365.
  • [31] C. Wang, O. El-Sepelgy, Curr. Opin. Green Sustain. Chem., 2021, 32, 100547.
  • [32] C. Alberti, S. Eckelt, S. Enthaler, ChemistrySelect., 2019, 4, 12268.
  • [33] T. O. Kindler, C. Alberti, J, Sundermeier, S. Enthaler, ChemistryOpen, 2019, 8, 1410.
  • [34] Y. Miao, A. von Jouanne, A. Yokochi, Polymers, 2021, 13, 449.
  • [35] V. Brabec, J. Kasparkova, Coord. Chem. Rev., 2018, 376, 75.
  • [36] M. R. Gill, J. A. Thomas, Chem. Soc. Rev., 2012, 41, 3179.
  • [37] J. K. Barton, A. Danishefsky, J. Goldberg, J. Am. Chem. Soc., 1984, 106, 2172.
  • [38] Q. Yu, Y. Liu, L. Xu, C. Zheng, F. Le, X. Qin, J. Liu, Eur. J. Med. Chem. 2014, 82, 82.
  • [39] F. Gao, X. Chen, J. Q. Wang, Y. Chen, H. Chao, J. N. Ji,. Inorg. Chem., 2009, 48, 5599.
  • [40] S. Betanzos-Lara, O. Novakova, R. J. Deeth, A. M. Pizarro, G. J. Clarkson, B. Liskova, A. Habtemariam, J. Biol. Inorg. Chem., 2012, 17, 1033.
  • [41] H. Huang, P. Zhang, B. Yu, Y. Chen, J. Yang, L. Ji, H. Chao, J. Med. Chem., 2014, 57, 8971.
  • [42] F. P. Dwyer, E. C. Gyarfas, W. P. Rogers, J. H. Koch, Nature, 1952,170, 190.
  • [43] A. Greguric, I. D. Greguric, T. W. Hambley, J. R. Aldrich-Wright, J. G. Collins, Dalton Trans., 2002, 6, 849.
  • [44] G. Liao, Z. Ye, Y. Liu, B. Fu, C. Fu, C. PeerJ, 2017, 5, e3252.
  • [45] M. A. Malik, M. K. Raza, O. A. Dar, M. Abid, M. Y. Wani, A. S. Al-Bogami, A. A. Hashmi, Bioorg. Chem., 2019, 87, 773.
  • [46] M. Vasarri, Mar. Drugs, 2023, 21, 26.
  • [47] X. Chen, Neural Regen. Res., 2012, 7, 376.
  • [48] J. Kruk, J. Physiol. Sci., 2022, 72, 19.
  • [49] A. Jezierska, A. Sykuła, Biotechnol. Food Sci., 2023, 85, 34.
  • [50] C. Mu, K. E. Prosser, S. Harrypersad, G. A. MacNeil, R. Panchmatia, J. R. Thompson, C. J. Walsby, Inorg. Chem., 2018, 57, 15247.
  • [51] S. Kanchanadevi, F. R. Fronczek, V. Mahalingam, Inorganica Chim. Acta, 2021, 526, 120532.
  • [52] E. S. Antonarakis, A. Emadi, Cancer Chemother. Pharmacol., 2010, 66, 1.
  • [53] E. Namiecińska, M. Grazul, B. Sadowska, M. Więckowska-Szakiel, P. Hikisz, B. Pasternak, E. Budzisz, Molecules, 2022, 27, 468.
  • [54] S. A. Elsayed, S. Harrypersad, H. A. Sahyon, M. A. El-Magd, C. J. Walsby, Molecules, 2020, 25, 4284.
  • [55] J. Li, R. Wang, J. Gao, Drug Discov. Ther., 2021, 15, 44.
  • [56] H.-Y. Min, H. Y. Lee, Exp. Mol. Med., 2022, 54, 1670.
  • [57] U. Śliwińska-Hill, J. Celmer, Nowotwory, 2015, 65, 517.
  • [58] N. Tian, Y. Feng, W. Sun, J. Lu, S. Lu, Y. Yao, Q. Zhou, Dalton Trans., 2019, 48, 6492.
  • [59] H. D. Cole, J. A. Roque III, G. Shi, L. M. Lifshits, E. Ramasamy, P. C. Barrett, S. McFarland, A.J. Am. Chem. Soc., 2022, 144, 9543.
  • [60] I. A. Shutkov, Y. N, Okulova, V. Y. Tyurin, E. V. Sokolova, D. A. Babkov, A. A. Spasov, A.A. Nazarov, Int. J. Mol. Sci., 2021, 22, 13468.
  • [61] S. W. Chang, A. R. Lewis, K. E. Prosser, J. R. Thompson, M. Gladkikh, M. B. Bally, C. J. Walsby, Inorg. Chem., 2016, 55, 4850
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9389fa53-e4af-486f-bdfc-eb843830a1d8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.