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This paper concerns the impact of coil factors on a hydraulic electric inerter-based vehicle
suspension. A hydraulic electric inerter device is first introduced, and the dynamic model
of a quarter car is established. Subsequently, the influences of the coil factors on the body
acceleration, suspension working space and dynamic tire load are investigated in both the
time and frequency domain. Results show that the coil factors have a slight effect on the
vehicle suspension performance, decreasing the root-mean-square (RMS) of the vehicle body
acceleration and increasing the RMS of the suspension working space and dynamic tire load.
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1. Introduction

With the goal of improving vehicle suspension performance, active suspensions (Ding et al., 2019;
Chen et al., 2017; Xue et al., 2019) and semi-active suspensions (Huang et al., 2013; Rashid
et al., 2011; Chen et al., 2015) have been proposed due to their excellent vibration isolation
performance. More recently, a new two-terminal mechanical element, the inerter (Smith, 2002),
was invented and applied to various engineering fields, such as vehicle suspensions (Smith and
Wang, 2004; Wang et al., 2017; Shen et al., 2019a), civil engineering (Wang et al., 2010; Lazar
et al., 2014) and aerospace engineering (Li et al., 2016, 2017). The research has shown that, in
comparison to the traditional spring-damper network, the vibration isolation performance of a
mechanical system can be dramatically improved by employing an inerter element.

Generally, an inerter can be mechanically realized by various structures, such as the rack-and-
pinion (Papageorgiou and Smith, 2005), ball-screw (Papageorgiou et al., 2009; Sun et al., 2016)
and fluid-based forms (Swift et al., 2013; Shen et al., 2016a; Liu et al., 2018). Moreover, on the
basis of the mechanical inerter device, a motor can be attached to obtain a new type of the inerter
structure, such as the mechatronic inerter (Wang and Chan, 2011) and the hydraulic electric
inerter (Yang et al., 2015; Shen et al., 2019b). The mechatronic or hydraulic electric inerter
have the metrics that it can use the electric elements to simulate impedanceof the corresponding
mechanical elements, which can solve high complexities of the mechanical network. For motor
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analysis, one can use in a vibration isolation system not only vibration control (Amati et al.,
2011), but also can act as an energy-harvesting device (Liu et al., 2017). However, the effects of
coil factors, such as the coil resistor and inductor, have drawn much attention (Shi et al., 2014).
As a consequence, this paper will concentrate on the study of the impact of the coil resistor
and inductor on the hydraulic electric inerter-based vehicle suspension. The paper is arranged
as follows.
In Section 2, the hydraulic electric inerter (HEI) device is presented. On the basis of the

hydraulic electric inerter element, the dynamic model of a quarter car model is established
in Section 3. By considering the coil resistor and inductor factors, their impacts on vehicle
suspension performance are discussed in detail in Section 4. Some conclusions are obtained in
Section 5.

2. Hydraulic electric inerter

The mechatronic inerter (Wang and Chan, 2011) has the feature that it is always in parallel
with the electric network, such that the electric elements can be used to simulate the target
mechanical impedance. It is worth noting that a single linear motor was also adopted as an
electromagnetic inerter-based vibration suppression device (Gonzalez-Buelga et al., 2015). In
this study, a novel hydraulic electric inerter, which consists of a hydraulic piston inerter and a
linear motor is introduced. The schematic of the hydraulic electric inerter, called an HEI device,
is presented in Fig. 1.

Fig. 1. Schematic of an HEI device

It is shown that the piston rod and the main cylinder are the two terminals of the HEI device.
The HEI device involves the main cylinder, the auxiliary cylinder and the linear motor. When
there is a fluid flowing between the main and auxiliary cylinder, different section areas of the
two cylinders will lead to motion transmission between the piston in the main cylinder and the
piston in the auxiliary cylinder. Note that the piston rod of the auxiliary cylinder is connected
to the mover of the linear motor, and voltage can be generated when a pair of forces is applied
to the HEI device. The impedance of the HEI device can be expressed as (Yang et al., 2015)

F (s)

v(s)
=
(S1
S2

)2
ms+

Km
Re + Les+ Ze(s)

(2.1)

where S1 and S2 are sectional areas of the main and auxiliary cylinder, m is mass of the piston
rod and the moving rod of the linear motor, F (s) and v(s) are the Laplace forms of the force
and velocity of the two terminals of the HEI device, Km is the motor coefficient, for the HEI
device, Km = (S1/S2)

2kekt, ke is the voltage coefficient, kt is the force coefficient, Re is the coil
resistor, Le is the coil inductor. Ze(s) is the impedance of the external electric circuit. It is seen
that the first section of equation (2.1) is the mechanical inertance, and can be expressed as

bm = m
(S1
S2

)2
(2.2)
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3. Quarter car model

Based on the proposed HEI device, a quarter car model is considered in this Section. The
mechanical network has a basic series layout (Shen et al., 2017), in which the HEI is in series
with a mechanical damper. The external electric network comes from a five-element (Jiang and
Smith, 2011). The quarter car model is depicted in Fig. 2, where ms is the sprung mass, mu is
the unsprung mass,K is the supporting spring of the suspension,Kt is tire stiffness, zs, zu and zr
are vertical displacements of the sprung mass, unsprung mass and the random road input, cm is
mechanical damping, zb is vertical displacement of the HEI device, L is the inductor, R1, R2
and R3 are resistors, C is capacitor, and Vg is voltage of the external circuit.

Fig. 2. Quarter car model

The dynamic equations of the quarter car model are expressed as

msz̈s +K(zs − zu) + bm(z̈s − z̈b) + Ft = 0

muz̈u +Kt(zu − zr)−K(zs − zu)− bm(z̈s − z̈b)− Ft = 0

bm(z̈s − z̈b) + Ft = cm(żb − żu)

(3.1)

where Ft is the damping force generated by the linear motor. The Laplace form of Ft is

Ft(s) =
(S1
S2

)2( ktke
Re + sLe + Ze(s)

)

[żs(s)− żb(s)] (3.2)

The impedance of the external circuit is

Ze(s) =
1

R1
+

1

Ls+ 1
1

R3
+ 1
1
Cs
+R2

(3.3)

The parameters of the quarter car model are shown in Table 1.

The suspension parameters are optimized by the approach presented in (Shen et al., 2016b),
and the detailed values are shown in Table 2. It is noting that in the optimal design of the
vehicle HE-ISD suspension, all of the three vehicle suspension performance indexes, namely, the
RMS of vehicle body acceleration, the RMS of the suspension working space and the RMS of
the dynamic tire load are taken into account. It is a multi-objective optimization problem, and
a representative result is selected to show the advantages of the vehicle HE-ISD suspension.

Compared to a traditional passive suspension considered in (Shen et al., 2016b), the per-
formance indexes are shown in Table 3 and the responses of the vehicle Inerter-Spring-Damper
(ISD) suspension based on the HEI device, here, called vehicle HE-ISD suspension, are presented
in Figs. 3 to 6.
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Table 1. Model parameters

Parameters Values

Vehicle body mass ms [kg] 320

Unsprung mass mu [kg] 45

Suspension spring stiffness K [N/m] 22000

Tire spring stiffness Kt [N/m] 190000

Coil resistor of linear motor Re [Ω] 3.8

Coil inductor of linear motor Le [mH] 26

Force coefficient ke [NA] 100

Voltage coefficient kt [Vm/s] 81

Table 2. Optimized parameters

Parameters Values

Mechanic inertance bm [kg] 93.57

Mechanical damper cm [Ns/m] 1840

Resistor R1 [Ω] 124361.5

Resistor R2 [Ω] 11.9998

Resistor R3 [Ω] 98134.3

Inductor L [H] 0.2111

Capacitor C [F] 0.0037

Table 3. Performance indexes of vehicle suspension

RMS values Passive suspension HE-ISD suspension Improvement

Vehicle body acceleration [m/s2] 2.2087 2.1942 0.66%

Suspension working space [m] 0.0223 0.0177 20.63%

Dynamic tire load [N] 1505.2 1336.6 11.20%

Fig. 3. Responses of vehicle body acceleration
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Fig. 4. Responses of suspension working space

Fig. 5. Responses of dynamic tire load

It can be seen that, compared to the passive suspension system, the vibration isolation per-
formance of the vehicle HE-ISD suspension is dramatically improved. In the frequency analysis,
the two peaks of the gain of vehicle body acceleration are lower than those of the passive sus-
pension. However, the gain in the middle frequency is higher than that of the passive one. The
gains of the suspension working space of the vehicle HE-ISD suspension are all lower than those
of the passive suspension over all considered frequencies. With the same trends of vehicle body
acceleration, the two peaks of the gains of the dynamic tire load are lower than those of the
passive one, but in the middle frequency, the gain is slightly higher than that of the passive sus-
pension. In terms of the performance indexes in the time domain, namely, the root-mean-square
(RMS) of the vehicle body acceleration, suspension working space and dynamic tire load, the
improvements are 0.66%, 20.63% and 11.20%, respectively. It is noted that the HE-ISD suspen-
sion is superior to the passive suspension for the suspension working space and dynamic tire
load, but for the body acceleration, the improvement is relatively small.

4. Impact of coil factors on vehicle suspension performance

In this Section, the impact of the coil factors on the vehicle suspension performance will be
analyzed in detail, and three scenarios will be discussed, considering the coil resistor, considering
the coil inductor and considering both of the coil resistor and inductor.
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4.1. Effect of the coil resistor

Considering the coil resistor, Table 4 shows comparisons of performance indexes, and Figs. 6
through 8 show differences between the vehicle HE-ISD suspension and the suspension when
considering the resistor only.

Fig. 6. Comparisons of vehicle body acceleration with resistor

Fig. 7. Comparisons of suspension working space with resistor

Fig. 8. Comparisons of dynamic tire load with resistor
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Table 4. Comparisons of performance indexes of the vehicle suspension with resistor

RMS values Without resistor With resistor Improvement

Vehicle body acceleration [m/s2] 2.1942 2.1842 1.11%

Suspension working space [m] 0.0177 0.0181 18.83%

Dynamic tire load [N] 1336.6 1345.1 10.64%

It is noted that for the gain of vehicle body acceleration, when considering the coil resistor,
the resonance peak in the low frequency will increase. In contrast, the resonance peak in the high
frequency will slightly decrease, and the resonance frequency will also decrease. The same trends
are also found in terms of the gain of the dynamic tire load. For the suspension working space,
both the resonance peaks in the low frequency and high frequency will increase when considering
the coil resistor factors. For the performance indexes, the RMS of the vehicle body acceleration
will decrease, and the RMS of the suspension working space and dynamic tire load will increase.
However, in comparison to the passive suspension, the improvements are still 1.11%, 18.83% and
10.64%, respectively.

4.2. Effect of the coil inductor

Considering the coil inductor, Table 5 shows comparisons of performance indexes, and Figs. 9
through 11 show the differences between the HE-ISD suspension and the suspension when con-
sidering the inductor only.

Table 5. Comparisons of performance indexes of the vehicle suspension with inductor

RMS values Without inductor With inductor Improvement

Vehicle body acceleration [m/s2] 2.1942 2.1842 1.11%

Suspension working space [m] 0.0177 0.0179 19.73%

Dynamic tire load [N] 1336.6 1345.2 10.63%

Fig. 9. Comparisons of the vehicle body acceleration with inductor

It is seen that when considering the coil inductor, there are no obvious changes in the low
frequency. However, for the resonance peaks in the high frequency, the gain of the vehicle body
acceleration is slightly decreased, while the gains of the suspension working space and dynamic
tire load are dramatically increased. For the performance indexes, the RMS of the vehicle body
acceleration will decrease, and the RMS of the suspension working space and dynamic tire load
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Fig. 10. Comparisons of suspension working space with inductor

Fig. 11. Comparisons of dynamic tire load with inductor

will increase. However, in comparison to the passive suspension, the improvements are 1.11%,
19.73% and 10.63%.

4.3. Effect of both the coil resistor and inductor

Considering both the coil resistor and inductor, Table 6 shows comparisons of performance
indexes, and Figs. 12 through 14 show differences between the HE-ISD suspension and the
suspension when considering both factors.

Table 6. Comparisons of performance indexes of the vehicle suspension with resistor and in-
ductor

RMS values
Without resistor With resistor

Improvement
and inductor and inductor

Vehicle body acceleration [m/s2] 2.1942 2.1763 1.47%

Suspension working space [m] 0.0177 0.0181 18.83%

Dynamic tire load [N] 1336.6 1345.1 10.21%

It is noted that for the gain of vehicle body acceleration, when considering the coil resistor
and inductor, the resonance peak in the low frequency will increase. In contrast, the resonance
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Fig. 12. Comparisons of vehicle body acceleration with resistor and inductor

Fig. 13. Comparisons of suspension working space with resistor and inductor

Fig. 14. Comparisons of dynamic tire load with resistor and inductor

peak in the high frequency will slightly decrease, and the resonance frequency will also decrease.
The same trends are also found in terms of the gain of the dynamic tire load. For the suspension
working space, both the resonance peaks in the low frequency and high frequency will increase
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when considering the coil resistor and inductor, and the resonance frequency in the high fre-
quency will decrease. For the performance indexes, the RMS of the vehicle body acceleration
will decrease, and both the RMS values of the suspension working space and dynamic tire load
will increase. However, in comparison to the passive suspension, the improvements are 1.47%,
18.83% and 10.21%.

It is worth noting that regardless of whether only the coil resistor, only the coil inductor or
both the coil resistor and inductor are considered, the RMS of the vehicle body acceleration will
decrease, and the RMS of the suspension working space and dynamic tire load will increase.

5. Conclusion

In this paper, the impact of the coil factors on the hydraulic electric inerter-based vehicle sus-
pension is investigated. The hydraulic electric inerter (HEI) device was first introduced, and the
quarter car model, which is based on the proposed HEI device, was established. The advantages
of the proposed vehicle HE-ISD suspension were validated by numerical simulations. Then, by
considering the coil resistor and inductor, three scenarios were taken into account. The results
showed that the performance of the vehicle HE-ISD suspension will be slightly affected by the
coil factors, so that the RMS of the vehicle body acceleration will decrease and that the RMS
of the suspension working space and dynamic tire load will, on the contrary, increase. However,
the performance indexes are still smaller than those of the passive suspension.
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