PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Municipal Solid Waste Landfill Leachate Treatment by Phragmites australis, Typha latifolia and Scirpus validus through Constructed Wetlands

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A sustainable performance evaluation of pilot-scale was carried through horizontal sub-surface Constructed Wetlands system for treating the leachate from constructed Municipal Solid Waste Landfill at Institute of Environmental Engineering and Management, Mehran University of Engineering and Technology Jamshoro. The CWs were planted with Phragmites australis, Typha latifolia and Scirpus validus with sand and gravel. The leachate had been treated with two different cycles, first cycle was performed in the winter season whereas second cycle in summer, to differentiate the performance with seasonal variation. Chemical parameters of leachate pH, Biological Oxygen Demand (BOD), Chemical Oxygen Demand (COD), Total Suspended Solids TSS, Ammonia-nitrogen (NH3-N), Nitrate-nitrogen (NO3-N), Total Phosphate PO43- (TP) and heavy metals, Lead (Pb) and Copper (Cu) were tested with intervals of certain weeks. The tests result showed that all parameters experienced a considerable reduction in their concentrations. Significant reduction efficiencies were recorded for parameters, BOD with 53–82%, COD with 32–46%, TSS with 59–75%, NH3-N with 90–92%, NO3-N with 85–87%, and TP with 48–64%, and heavy metals Pb and Cu with 28–48% respectively in four weeks of the first cycle by all three plants. Whereas, in the second cycle, the removal efficiencies of BOD 78–93%, COD 63–76%, TSS 52–83%, NH3-N 90–91% and NO3-N 91–92% and heavy metals Pb and Cu with 21–58% respectively in five weeks were observed by all three plants. Along with the experimentation, United Nations Sustainable Development Goals UN SDGs are also highlighted. This study helps achieving tremendous SDGs accompanying treatment of leachate.
Rocznik
Strony
303--314
Opis fizyczny
Bibliogr. 48 poz., rys., tab.
Twórcy
  • Institute of Environmental Engineering & Management, Mehran University of Engineering & Technology, Jamshoro, Sindh, 76062 Pakistan
  • Institute of Environmental Engineering & Management, Mehran University of Engineering & Technology, Jamshoro, Sindh, 76062 Pakistan
  • Institute of Environmental Engineering & Management, Mehran University of Engineering & Technology, Jamshoro, Sindh, 76062 Pakistan
  • US-Pakistan Center for Advanced Studies in Water (USPCASW), Mehran University of Engineering & Technology, Jamshoro, Sindh, 76062 Pakistan
  • Institute of Environmental Engineering & Management, Mehran University of Engineering & Technology, Jamshoro, Sindh, 76062 Pakistan
Bibliografia
  • 1. Almuktar, S.A., Abed, S.N., Scholz, M. 2018. Wetlands for wastewater treatment and subsequent recycling of treated effluent: a review. Environmental Science and Pollution Research, 25, 23595–23623. https://doi.org/10.1007/s11356-018-2629-3
  • 2. Arif, M,. Abid, H,. Zeeshan,. Bilawal, A. 2014. Design, construction and operation of Bioreactor landfill, Bachelor of Engineering Thesis, Institute of Environmental Engineering and Management Mehran University of Engineering and Technology, Jamshoro, Pakistan.
  • 3. Aweng, E.R., Irfan, A.M., Liyana, A.A., Aisyah, S.S. 2018. Potential of phytoremediation using Scirpus validus for domestic waste open dumping leachate. Journal of Applied Sciences and Environmental Management, 22(1), 74–78. https://doi.org/10.4314/jasem.v22i1.13
  • 4. Ayesha, M., Yousafzai, S., Zia, N. 2017. Feasibility Study of CWs for Treatment of Domestic Wastewater in Rural Areas of Pakistan. Journal of Current Chemical and Pharmaceutical Sciences, 7(1), 107.
  • 5. Bakhshoodeh, R., Alavi, N., Oldham, C., Santos, R.M., Babaei, A.A., Vymazal, J., Paydary, P. 2020. Constructed wetlands for landfill leachate treatment: A review. Ecological Engineering, 146, 105725. https://doi.org/10.1016/j.ecoleng.2020.105725.
  • 6. Bakhshoodeh, R., Alavi, N., Mohammadi, A.S., Ghanavati, H. 2016. Removing heavy metals from Isfahan composting leachate by horizontal subsurface flow constructed wetland. Environmental Science and Pollution Research, 23, 12384–12391.
  • 7. Cano, V., Vich, D.V., Rousseau, D.P.L., Lens, P.N.L., Nolasco, M.A. 2019. Influence of recirculation over COD and N-NH4 removals from landfill leachate by horizontal flow constructed treatment wetland. International Journal of Phytoremediation, 21, 998–1004. https://doi.org/10.1080/15226514.2019.1594681
  • 8. Chabhadiya, K., Srivastava, R.R., Pathak, P. 2021. Two-step leaching process and kinetics for an ecofriendly recycling of critical metals from spent Liion batteries. Journal of Environmental Chemical Engineering, 9(3), 105232.
  • 9. Chan, M.Y., Tee, C.S., Chai, T.T., Sim, Y.L., Beh, W.L. 2022. Evaluation of electro-assisted phytoremediation (EAPR) system for heavy metal removal from synthetic leachate using Pistia stratiotes. International Journal of Phytoremediation, 24(13), 1376-1384. https://doi.org/10.1080/15226514.2022.2031863
  • 10. Chaturvedi, H., Kaushal, P. 2018. Comparative study of different Biological Processes for non-segregated Municipal Solid Waste (MSW) leachate treatment. Environmental Technology & Innovation, 9, 134–139. https://doi.org/10.1016/j.eti.2017.11.008
  • 11. Dan, T.H., Chiem, N.H., Brix, H. 2011. Treatment of high-strength wastewater in tropical CWs planted with Sesbania sesban: horizontal subsurface flow versus vertical downflow. Ecological Engineering, 37(5), 711–720. https://doi.org/10.1016/j.ecoleng.2010.07.030
  • 12. Donde, O.O. 2017. Wastewater management techniques: a review of advancement on the appropriate wastewater treatment principles for sustainability. Environmental Management and Sustainable Development, 6(1), 40–58. https://doi.org/10.5296/emsd.v6i1.10137
  • 13. Dong, Z., Sun, T. 2007. A potential new process for improving nitrogen removal in constructed wetlands—promoting coexistence of partialnitrification and ANAMMOX. Ecological Engineering. 31, 69–78. https://doi.org/10.1016/j.ecoleng.2007.04.009
  • 14. Dotro, G., Castro, S., Tujchneider, O., Piovano, N., Paris, M., Faggi, A., Fitch, M. 2012. Performance of pilot-scale CWs for secondary treatment of chromium-bearing tannery wastewaters. Journal of Hazardous Materials, 239, 142–151. https://doi.org/10.1016/j.jhazmat.2012.08.050
  • 15. Drizo, A., Frost, C.A., Grace, J., Smith, K.A. 2000. Phosphate and ammonium distribution in a pilot-scale constructed wetland with horizontal subsurface flow using shale as a substrate. Water Research. 34, 2483–2490. https://doi.org/10.1016/S0043-1354(99)00424-8
  • 16. El-Fadel, M., Bou-Zeid, E.R., Chahine, W. 2002. Long term simulations of leachate generation and transport from solid waste disposal at a former quarry site. Journal of Solid Waste Technology and Management, 28(2), 60–70.
  • 17. Gacia, E., Bernal, S., Nikolakopoulou, M., Carreras, E., Morgado, L., Ribot, M., Martí, E. 2019. The role of helophyte species on nitrogen and phosphorus retention from wastewater treatment plant effluents. Journal of Environmental Management, 252, 109585. https://doi.org/10.1016/j.jenvman.2019.109585
  • 18. Gacia, S., Bernal, M., Nikolakopoulou, E., Carreras, L., Morgado, M., Ribot, M., Isnard, A., Sorolla, F., Sabater, E., Marti “Hoornweg, D.; Bhada-Tata, P. 2012. What a Waste : A Global Review of Solid Waste Management. Urban development series;knowledge papers no. 15. World Bank, Washington, DC. © World Bank. https://openknowledge.worldbank.org/handle/10986/17388 License: CC BY 3.0 IGO.
  • 19. Gajski, G., Oreščanin, V., Garaj-Vrhovac, V. 2012. Chemical composition and genotoxicity assessment of sanitary landfill leachate from Rovinj, Croatia. Ecotoxicology and Environmental Safety, 78, 253–259.
  • 20. Grugnaletti, M., Pantini, S., Verginelli, I., Lombardi, F. 2016. An easy-to-use tool for the evaluation of leachate production at landfill sites. Waste Management, 55, 204–219.
  • 21. Harne, K., Joshi, H., Wankhade, R. 2022. Phytoremediation an effective technique for domestic wastewater treatment. Research Square. https://doi.org/10.21203/rs.3.rs-1955793/v1
  • 22. Hazra, M., Avishek, K., Pathak, G. 2015. Phytoremedial potential of Typha latifolia, Eichornia crassipes and Monochoria hastata found in contaminated water bodies across Ranchi City (India). International Journal of Phytoremediation, 17(9), 835–840. https://doi.org/10.1080/15226514.2014.964847
  • 23. Kadlec, R., Wallace, S. 2008. Treatment Wetlands, 2nd edition. CRCPress, Boca Raton.
  • 24. Kiviat, E. 2013. Ecosystem services of Phragmites in North America with emphasis on habitat functions. AoB PLANTS, 5, plt008. https://doi.org/10.1093/aobpla/plt008
  • 25. Lai, W.L., Zhang, Y., Chen, Z.H. 2012. Radial oxygen loss, photosynthesis, and nutrient removal of 35 wetland plants. Ecological Engineering, 39, 24–30. https://doi.org/10.1016/j.ecoleng.2011.11.010
  • 26. Ma, S., Zhou, C., Pan, J., Yang, G., Sun, C., Liu, Y., Zhao, Z. 2022. Leachate from municipal solid waste landfills in a global perspective: Characteristics, influential factors and environmental risks. Journal of Cleaner Production, 333, 130234.
  • 27. Mirghorayshi, M., Zinatizadeh, A.A., van Loosdrecht, M. 2021. Simultaneous biodegradability enhancement and high-efficient nitrogen removal in an innovative single stage anaerobic/anoxic/aerobic hybrid airlift bioreactor (HALBR) for composting leachate treatment: Process modeling and optimization. Chemical Engineering Journal, 407, 127019.
  • 28. Mojiri, A., Aziz, H.A., Zahed, M.A., Aziz, S.Q., Selamat, M.R.B. 2013. Phytoremediation of heavy metals from urban waste leachate by southern cattail (Typha domingensis). International Journal of Scientific Research in Environmental Sciences, 1(4), 63–70.
  • 29. Omondi, D.O., Navalia, A.C. 2020. CWs in wastewater treatment and challenges of emerging resistant genes filtration and reloading. Devlin, A., Pan, J., & Manjur Shah, M. (Eds.). (2021). Inland Waters - Dynamics and Ecology. IntechOpen. https://doi.org/10.5772/intechopen.93293
  • 30. Pendleton, C.H., Morris, J.W.F., Goldemund, H., Rozema, L.R. 2005. Leachate treatment using vertical subsurface flow wetland systems–findings from two pilot studies. Proc. 10th International Waste Management and Landfill Symposium, 727–728. https://aqua-tt.com/projects/leachate-two-pilotstudies.pdf
  • 31. Picard, C.R., Fraser, L.H., Steer, D. 2005. The interacting effects of temperature and plant community type on nutrient removal in wetland microcosms. Bioresource Technology, 96(9), 1039–1047. https://doi.org/10.1016/j.biortech.2004.09.007
  • 32. Reddy, K., Kadlec, R., Flaig, E., Gale, P. 1999. Phosphorus retention in streams and wetlands: a review. Critical Review in Environmental Science and Technology, 29, 83–146. https://doi.org/10.1080/10643389991259182
  • 33. Santos, M., Melo, V.F., Monte Serrat, B., Bonfleur, E., Araujo, E.M., Cherobim, V.F. 2021. Hybrid technologies for remediation of highly Pb contaminated soil: sewage sludge application and phytoremediation. International Journal of Phytoremediation, 23(3), 328–335. https://doi.org/10.1080/15226514.2020.1813077
  • 34. Silvestrini, N.E.C., Hadad, H.R., Maine, M.A., Sanchez, G.C., del Carmen Pedro, M., Caffaratti, S.E. 2019. Vertical flow wetlands and hybrid systems for the treatment of landfill leachate. Environmental Science and Pollution Research, 26, 8019–8027. https://doi.org/10.1007/s11356-019-04280-5
  • 35. Singh, D., Tiwari, A., Gupta, R. 2012. Phytoremediation of lead from wastewater using aquatic plants. Journal of Agricultural Technology, 8(1), 1–11.
  • 36. Tara, N., Arslan, M., Hussain, Z., Iqbal, M., Khan, Q.M., Afzal, M. 2019. On-site performance of floating treatment wetland macrocosms augmented with dye-degrading bacteria for the remediation of textile industry wastewater. Journal of Cleaner Production, 217, 541–548. https://doi.org/10.1016/j.jclepro.2019.01.258
  • 37. Teewno, A.M. 2021. Removal of arsenic by phytoremediation. World Journal of Engineering Research and Technology WJERT, 8(1), 81–97 https://doi.org/10.13140/RG.2.2.32412.97927
  • 38. Van Biervliet, O., McInnes, R.J., Lewis-Phillips, J., Tosney, J. 2020. Can an integrated CW in Norfolk reduce nutrient concentrations and promote in situ bird species richness?. Wetlands, 40(5), 967–981.
  • 39. Vyas, S., Prajapati, P., Shah, A.V., Varjani, S. 2022. Municipal solid waste management: Dynamics, risk assessment, ecological influence, advancements, constraints and perspectives. Science of The Total Environment, 18, 152802. https://doi.org/10.1016/j.scitotenv.2021.152802
  • 40. Vymazal, J., Zhao, Y., Mander, Ü. 2021. Recent research challenges in CWs for wastewater treatment: A review. Ecological Engineering, 169, 106318. https://doi.org/10.1016/j.ecoleng.2021.106318
  • 41. Vymazal, J., Kropfelov´a, L. 2009. Removal of organics in constructed wetlands with horizontal sub-surface flow: A review of the field experience. Science of The Total Environment, 407, 3911–3922. https://doi.org/10.1016/j.scitotenv.2008.08.032
  • 42. Wan, X., Lei, M., Chen, T. 2016. Cost–benefit calculation of phytoremediation technology for heavymetal-contaminated soil. Science of the total environment, 563, 796–802.
  • 43. Wdowczyk, A., Szymańska-Pulikowska, A., Gałka, B. 2022. Removal of selected pollutants from landfill leachate in CWs with different filling. Bioresource Technology, 353, 127136. https://doi.org/10.1016/j.biortech.2022.127136
  • 44. Wijekoon, P., Koliyabandara, P.A., Cooray, A.T., Lam, S.S., Athapattu, B.C., Vithanage, M. 2022. Progress and prospects in mitigation of landfill leachate pollution: Risk, pollution potential, treatment and challenges. Journal of Hazardous Materials, 421, 126627. https://doi.org/10.1016/j.jhazmat.2021.126627
  • 45. World Bank. 2022. The World Bank Annual Report 2022. The World Bank.
  • 46. Yalcuk, A., Ugurlu, A. 2009. Comparison of horizontal and vertical constructed wetland systems for landfill leachate treatment. Bioresource Technology, 100, 2521–2526. https://doi.org/10.1016/j.biortech.2008.11.029
  • 47. Yang, C., Fu, T., Wang, H., Chen, R., Wang, B., He, T., Chen, M. 2021. Removal of organic pollutants by effluent recirculation CWs system treating landfill leachate. Environmental Technology & Innovation, 24, 101843. https://doi.org/10.1016/j.eti.2021.101843
  • 48. Younas, F., Niazi, N.K., Bibi, I., Afzal, M., Hussain, K., Shahid, M., Bundschuh, J. 2022. CWs as a sustainable technology for wastewater treatment with emphasis on chromium-rich tannery wastewater. Journal of Hazardous Materials, 422, 126926.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-938122c6-6eee-470b-88d5-8b22969d9165
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.