PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Entropy generation on mhd flow of Powell-Eyring fluid between radially stretching rotating disk with diffusion-thermo and thermo-diffusion effects

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An investigation is performed for an alyzing the effect of entropy generation on the steady, laminar, axisymmetric flow of an incompressible Powell-Eyring fluid. The flow is considered in the presence of vertically applied magnetic field between radially stretching rotating disks. The Energy and concentration equation is taking into account to investigate the heat dissipation, Soret, Dufour and Joule heating effects. To describe the considered flow non-dimensionalized equations, an exact similarity function is used to reduce a set of the partial differential equation into a system of non-linear coupled ordinary differential equation with the associated boundary conditions. Using homotopy analysis method (HAM), an analytic solution for velocity, temperature and concentration profiles are obtained over the entire range of the imperative parameters. The velocity components, concentration and temperature field are used to determine the entropy generation. Plots illustrate important results on the effect of physical flow parameters. Results obtained by means of HAM are then compared with the results obtained by using optimized homotopy analysis method (OHAM). They are in very good agreement.
Rocznik
Strony
20--32
Opis fizyczny
Bibliogr. 44 poz., rys., wykr.
Twórcy
autor
  • Department of Mathematics, University of Karachi, Karachi 75270, Pakistan
autor
  • Department of Mathematics, University of Karachi, Karachi 75270, Pakistan
autor
  • Department of Mathematics, Government College University Lahore, 54000, Pakistan
Bibliografia
  • 1. Abolbashari M.H., Freidoonimehr N., Nazari F., Rashidi M.M. (2014), Entropy analysis for an unsteady MHD flow past a stretching permeable surface in nano-fluid, Powder Technology, 267, 256–267.
  • 2. Afify A.A. (2009), Similarity solution in MHD: effects of thermal diffusion and diffusion thermo effects on free convective heat and mass transfer over a stretching surface considering suction or injection, Communications in Nonlinear Science and Numerical Simulation, 14, 2202–2214.
  • 3. Anjali Devi S.P., Uma Devi R. (2011), Soret and Dufour effects on MHD slip flow with thermal radiation over a porous rotating infinite disk, Communications in Nonlinear Science and Numerical Simulation, 16, 1917–1930.
  • 4. Ariel P.D. (2001), Axisymmetric Flow of a Second Grade Fluid Past a Stretching Sheet, International Journal of Engineering Science, 39, 529-553.
  • 5. Arikoglu A., Ozkol I. (2008), Komurgoz G. Effect of slip on entropy generation in a single rotating disk in MHD flow, Appl. Energy, 85, 1225-1236.
  • 6. Asghar S., Jalil M., Hussan M., Turkyilmazoglu M. (2014), Lie group analysis of flow and heat transfer over a stretching rotating disk, International Journal of Heat and Mass Transfer, 69, 140–146.
  • 7. Ashraf M., Batool K. (2013), MHD flow and heat transfer of a micropolar fluid over a stretchable disk, Journal of Theoretical and Applied Mechanics, 51, 25-38.
  • 8. Banks W. (1983), Similarity solutions of the boundary-layer equations for a stretching wall, Journal de. Mécaniqe, Théorique et Appliquee, 2, 375–392.
  • 9. Bataller R.C. (2007), Viscoelastic fluid flow and heat transfer over a stretching sheet under the effects of a non-uniform heat source, viscous dissipation and thermal radiation, International Journal of Heat and Mass Transfer, 50, 3152–3162.
  • 10. Bejan A. (1982), Entropy generation through heat fluid flow, 2nd ed., New York, Wiley.
  • 11. Bejan A. (1996), Entropy generation minimization: the method of thermodynamic optimization of finite-size systems and finite-time processes, CRC Press.
  • 12. Bhatti M.M., Abbas T., Rashidi M.M., Ali M.E.S. (2016), Numerical Simulation of Entropy Generation with Thermal Radiation on MHD Carreau nanofluid towards a Shrinking Sheet, Entropy, 18(6), 200.
  • 13. Butt A.S., Ali A. (2014), Entropy analysis of magnetohydrodynamic flow and heat transfer due to a stretching cylinder, Journal of Taiwan institute of chemical engineers, 45, 780-786.
  • 14. Butt A.S., Munawar S., Ali A., Mehmood A. (2012), Entropy generation in hydrodynamic slip flow over a vertical plate with convective boundary, Journal of Mechanical Science and Technology, 26, 2977- 2984.
  • 15. Crane L.J. (1970), Flow past a stretching plate, ZAMP, 21, 645-647.
  • 16. Eckert E.R.G., Drake R.M. (1972), Analysis of heat and mass transfer, New York: McGraw-Hill.
  • 17. Fang T. (2007), Flow over a stretchable disk, Physics of Fluids, 19, 128105.
  • 18. Fang T., Zhang J. (2008), Flow between two stretchable disks-an exact solution of the Navier–Stokes equations, International Communication of Heat and Mass Transfer, 35, 892–895.
  • 19. Gaikwad S.N., Malashetty M.S., Prasad Rama K. (2007), An analytical study of linear and nonlinear double diffusive convection with Soret and Dufour effects in couple stress fluid, International Journal of Non-Linear Mechanics, 42, 903-913.
  • 20. Gorder R.V., Sweet E., Vajravelu K. (2010), Analytical solutions of a coupled nonlinear system arising in a flow between stretching disks, Applied Mathematics and Computation, 216, 1513–1523.
  • 21. Grubka L.J., Bobba K.M. (1985), Heat transfer characteristic of a continuous stretching surface with variable temperature, International Journal of Heat and Mass Transfer, 107, 248–250.
  • 22. Guo J., Xu M., Cai J., Huai X. (2011), Viscous dissipation effect on entropy generation in curved square microchannels, Energy, 36, 5416-5423.
  • 23. Gupta P., Gupta A. (1977), Heat and mass transfer on a stretching sheet with suction or blowing, Candian Journal of Chemical Engineers, 55, 744–746.
  • 24. Hayat T., Mustafa M., Pop I. (2010), Heat and mass transfer for Soret and Dufour’s effect on mixed convection boundary layer flow over a stretching vertical surface in a porous medium filled with a viscoelastic fluid, Communications in Nonlinear Science and Numerical Simulation, 15, 1183–1196.
  • 25. Khan N.A., Aziz S., Khan N.A. (2014), MHD flow of Powell-Eyring fluid over a rotating disk, Journal of the Taiwan Institute of Chemical Engineers, 45, 2859-2867.
  • 26. Khan N.A., Aziz S., Khan N.A. (2014), Numerical Simulation for the Unsteady MHD Flow and Heat Transfer of Couple Stress Fluid over a Rotating Disk, Plos One..
  • 27. Li X., Faghri A. (2011), Local entropy generation analysis on passive high-concentration DMFCs (direct methanol fuel cell) with different cell structures, Energy, 36, 403-414.
  • 28. Liao S.J. (2003), Beyond Perturbation: Introduction to the Homotopy Analysis Method, Chapman & Hall CRC Press, Boca Raton.
  • 29. Liao S.J. (2004), On the Homotopy Analysis Method for nonlinear problems, Applied Mathematics and Computation, 147, 499–513.
  • 30. Mahian O., Oztop H., Pop I. Mahmud S., Wongwises S. (2013), Entropy generation between two vertical cylinders in the presence of MHD flow subjected to constant wall temperature, International Communications in Heat and Mass Transfer, 44, 87-92.
  • 31. Munawar S., Mehmood A., Ali A. (2011), Effects of slip on flow between two stretchable disks using optimal homotopy analysis method, Canadian Journal of Applied Sciences, 1, 50-68.
  • 32. Osalusi E., Side J., Harris R. (2008), Thermal-diffusion and diffusion-thermo effects on combined heat and mass transfer of a steady MHD convective and slip flow due to a rotating disk with viscous dissipation and Ohmic heating, International Journal of Heat and Mass Transfer, 35, 908–915.
  • 33. Parvin S., Chamkha A.J. (2014), An analysis on free convection flow, heat transfer and entropy generation in an odd-shaped cavity filled with nanofluid, International Communications in Heat and Mass Transfer, 54, 8-17.
  • 34. Powell R.E., Eyring H. (1944), Mechanism for the relaxation theory of viscosity, Nature, 154, 427–428.
  • 35. Rashidi M.M., Hayat T., Erfani E., Mohimanian Pour S.A., Awatif Hendi A. (2011), Simultaneous effects of partial slip and thermaldiffusion and diffusion-thermo on steady MHD convective flow due to a rotating disk, Communications in Nonlinear Science and Numerical Simulation, 16, 4303–4317.
  • 36. Rashidi M.M., Kavyani N., Abelman S. (2014), Investigation of entropy generation in MHD and slip flow over a rotating porous disk with variable properties, International Journal of Heat and Mass Transfer, 70, 892-917.
  • 37. Sajid M., Hayat T., Ayub M. (2008), Series Solution for Unsteady Axisymmetric Flow and Heat Transfer over a Radially Stretching Sheet, Communications in Nonlinear Science and Numerical Simulation, 13, 2193-2202.
  • 38. Sakiadis B.C. (1961), Boundary layer behavior on continuous solid surfaces: I boundary layer on a continuous flat surface, AICHE J., 7, 221-225.
  • 39. Shateyi S., Motsa S.S., Makukula Z. (2015), On Spectral Relaxation Method for Entropy Generation on a MHD Flow and Heat Transfer of a Maxwell Fluid, Journal of Applied Fluid Mechanics, 8, 21-31.
  • 40. Torabi M., Zhang K. (2015), Heat transfer and thermodynamic performance of convective- radiative cooling double layer walls with temperature-dependent thermal conductivity and internal heat generation, Energy Conversion and Management, 89, 12-23.
  • 41. Tsai R., Huang J.S. (2009), Heat and mass transfer for Soret and Dufour’s effects on Hiemenz flow through porous medium onto a stretching surface, International Journal of Heat and Mass Transfer, 52, 2399–2406.
  • 42. Turkyilmazoglu M. (2012), MHD fluid flow and heat transfer due to a stretching rotating disk, International Journal of Thermal Science, 51, 195–201.
  • 43. Wang C.Y. (1984), The three-dimensional flow due to a stretching flat surface, Physics of Fluids, 27, 1915.
  • 44. Wang C.Y. (1988), Stretching a surface in a rotating fluid, Journal of Applied Mathematics and Physics, ZAMP, 39, 177–185.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-937fb705-0f25-4674-9eb8-6244ae2b7445
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.