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Abstract: An investigation is performed for an alyzing the effect of entropy generation on the steady, laminar, axisymmetric flow of an in-
compressible Powell-Eyring fluid. The flow is considered in the presence of vertically applied magnetic field between radially stretching ro-
tating disks.  The Energy and concentration equation is taking into account to investigate the heat dissipation, Soret, Dufour and Joule 
heating effects. To describe the considered flow non-dimensionalized equations, an exact similarity function is used to reduce a set of the 
partial differential equation into a system of non-linear coupled ordinary differential equation with the associated boundary conditions. Us-
ing homotopy analysis method (HAM), an analytic solution for velocity, temperature and concentration profiles are obtained over the entire 
range of the imperative parameters. The velocity components, concentration and temperature field are used to determine the entropy gen-
eration. Plots illustrate important results on the effect of physical flow parameters. Results obtained by means of HAM are then compared 
with the results obtained by using optimized homotopy analysis method (OHAM). They are in very good agreement.   
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1. INTRODUCTION 

Energy flux or diffusion of energy is produced by a composi-
tion gradient termed as Dufour effect or the diffusion-thermo ef-
fect, though mass flux or species differentiation emerging in an 
initially homogeneous mixture can be caused by a temperature 
gradient, embodies the Soret or thermal-diffusion effect. Whenev-
er the transfer of heat and mass occurs then there exists density 
differences in the flow regime, abovementioned effects are mo-
mentous for the separation of isotope and mixture amongst gases 
of very light molecular weight such as hydrogen and helium and of 
medium molecular weight such as nitrogen and air. Due to the 
simultaneous occurrence of heat and mass transfer in a moving 
fluid, the association among the fluxes and the driving potentials 
might be of more complicated in nature. These effects substantial-
ly cover the areas, for instance, geothermal energy, nuclear waste 
disposal, hydrology etc. and deliberated as second-order phe-
nomena. Many researchers considered the combined effect of 
Soret and Dufour effects as they are not of  the smaller order of 
magnitude than the effect defined by Fourier’s and Fick’s laws. 
Diverse situations have been deliberated by modern researchers 
to gain insight regarding the non-Newtonian fluid flow rate and 
heat transfer on the stretching, rotating surfaces. Flow over inex-
tensible moving surface was first proposed and investigated by 
Sakiadas (1961). In recent times a large number of researchers 
have been further extending the work of Sakiadas (1961) by con-
sidering various physical situations. Exact solution for two-
dimensional viscous boundary layer flow affected by linear 
stretching of the elastic flat surface was presented by Crane 

(1970). Later Wang (1984) and Banks (1983) generalized the 
same problem for three-dimensional flows due to stretching sheet 
and to a power law stretching velocity respectively, the acquired 
result was no longer exact in such cases. In addition, Gupta and 
Gupta (1977) continued the Crane’s problem by including mass 
suction and injection at the wall. Bataller (2007) observed the flow 
and heat transfer characteristics of the homogeneous second-
grade fluid over a non-isothermal stretching sheet in the presence 
of non-uniform internal heat generation. While the flow over 
stretching surface subject to an unvarying heat flux along with the 
temperature field was discussed by Grubka and Bobba (1985). On 
the other hand, Wang (1988) talked about the rotating fluid flow 
over the stretching surface. Fang (2007) further extended the 
problem of stretching surface to the combine effects of stretching 
and disk rotation. Fang and Zhang (2008) found the exact solution 
of Navier-Stokes equations for the flow between two stretching 
disks. A numerical study was conducted by Ashraf and Batool 
(2013) for the analysis of the axisymmetric steady flow of an elec-
trically conducting micropolar fluid and heat transfer in the pres-
ence of magnetic field over a stretching disk. Turkyilmazoglu 
(2012) employed an extremely accurate spectral numerical inte-
gration scheme to examine the flow due to radially stretchable 
rotating disk of an electrically conducting fluid under the influence 
of vertically applied magnetic field. Moreover, for the first time 
power-law stretching rotating disk in the radial direction was pon-
dered by Asghar et al. (2014). He used Lie group theory to calcu-
late the symmetries of governing equations and then  Munawar et 
al. (2011) presented analytic solution using optimal homotopy 
analysis method for the viscous fluid flow sandwiched between 
two stretching disks with slip boundaries and the effects of materi-
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al parameters on the quantities of physical interest. Ariel (2001) 
studied the viscoelastic fluid flow over a radially stretching disk 
wherein he obtained the perturbation and asymptotic solution for 
small and large Deborah number respectively. The considered 
flow is axisymmetric for both cases. The Unsteady axisymmetric 
flow over a radially stretching sheet has been obtained by Sajid et 
al. (2008) and he also found the series solution of considered flow 
and observed the heat transfer effect. A number of cases had 
been presented by Eckert and Drake (1097) wherein thermal-
diffusion and diffusion-thermo effect cannot be neglected. Linear 
and non-linear stability analysis were carried out by Gaikwad 
(2007) for double diffusive convection with Soret and Dufour ef-
fects in a two component couple stress fluid layer. A numerical 
model to study the combined effect of Soret and Dufour effects 
and also the influence of hydromagnetic effect on convective slip 
flow, viscous dissipation, Ohmic heating, heat and mass transfer, 
the flow induced by a rotating disk was developed by Osalusi et 
al. (2008). Additionally, Afify (2009) worked for free convective 
heat and mass transfer characteristics over a stretching surface 
and also considered the suction or injection with Soret and Dufour 
effects. Tsai et al. (2009) presented heat and mass transfer anal-
ysis which had been designed for steady stagnation point flow 
through a porous medium over a uniform stretching surface by 
solving of continuity, momentum, energy and concentration equa-
tions using the numerical procedure. A numerical analysis using 
fourth order Runge-Kutta based on shooting method was con-
ducted, on MHD slip flow of an electrically conducting Newtonian 
fluid over a porous rotating infinite disk with the consideration of 
thermal radiation effect, Soret and Dufour effects by Anjali et al. 
(2011). With the aim of reporting, Hayat et al. (2010) observed 
heat and mass transfer characteristics of the viscoelastic fluid, in 
consideration of Soret and Dufour diffusion effects on mixed con-
vection boundary layer flow over a linearly stretching vertical sur-
face in a porous medium. Rashidi et al. (2011) considered the 
thermal-diffusion and diffusion-thermo effects, viscous dissipation, 
Ohmic heating, MHD convective and partial slip effects due to 
rotating disk flow of homogeneous fluid. He derived solution in the 
form of exponentially-decaying series functions via homotopy 
analysis method. Khan et al. (2014) have discussed the unsteady 
flow of couple stress fluid over a rotating disk in which they ob-
served the different behavior of couple stresses. Powell and 
Eyring (1944) proposed the mechanism for the relaxation theory 
of viscosity. Khan et al. (2014) presented MHD flow of Powell-
Eyring fluid due a rotating disk under the influential external mag-
netic field and discussed analytically using the semi-analytical 
method. 

In thermodynamical systems, flow and heat transfer process 
losses useful energy which can cause great disorder and control-
ling of this disorder is the core interest of modern engineers and 
scientists. Analysis of second law of thermodynamics is a useful 
tool by which one can secure wastage of energy, predict the per-
formance and fully utilize energy resources by minimizing the 
irreversibility, measured by entropy generation and get the optimal 
and improved efficiency of the thermal system. Many researchers 
employed the approach of minimizing entropy generation by tak-
ing diverse geometrical arrangements and many engineers have 
designed a thermal system to optimize, for instance, Butt et al. 
(2012) showed that entropy generation rate can be abridged and 
precise as the slip which is present over a vertical plate. Guo et al. 
(2011) numerically investigated laminar flow in a microchannel. Li 
et al. (2011) conducted local entropy generation analysis based 
on two-dimensional, two-phase fuel cells. For more recent studies 

see ref. (Butt and Ali, 2014, Rashidi et. Al., 2014, Torabi and 
Zhang, 2015,Parvin and Chamkha, 2014, Mahian et. Al., 2013, 
Shateyi et. Al., 2015, Abolbashari et. Al., 2014, Bhatti et. Al., 
2016). 

The flow of non-Newtonian fluid over stretching and rotating 
surfaces has been focused by scientists and engineers as it has 
extensively important applications. Phenomena’s in which such 
type of flows occur are designing cooling systems for liquid met-
als, thermal-power-generating systems, flow meters, gas turbines, 
medical equipment, metallurgical and polymer extrusion of sheet 
materials, rolling of plastic films etc. Furthermore, the spinning of 
fibers, glass blowing, crystalline materials and continuous casting 
of metals, involve the flow above the stretching surfaces.   

Stimulated by the aforementioned reference works and the 
various industrial and engineering applications of MHD flow of 
non-Newtonian fluids over a stretching rotating disk, the current 
article aims at investigating the Soret and Dufour effect on steady 
MHD flow of Powell-Eyring fluid in the presence of uniformly ap-
plied magnetic field. We propose to extend the problem of Gorder 
et al. (2010) and consider the electrically conducting non-
Newtonian Powell-Eyring fluid between two stretching disks with 
heat and mass transfer. Moreover, we are taking entropy genera-
tion analysis into account in order to discuss the second law of 
thermodynamics. Invoking suitable similarity transformations, the 
system of nonlinear partial differential equations reduced into 
nonlinear ordinary differential equations and then deciphered ana-
lytically for the velocity, temperature and the concentration distri-
butions by employing a powerful, easy-to-use technique, namely 
homotopy analysis method presented by Liao (2003, 2004) . First-
ly we computed the series solution and discussed its conver-
gence. Obtained results using HAM are compared with results of 
optimized homotopy analysis method (OHAM). Lastly, the graphs 
are sketched for the variations of different flow governing parame-
ters on the velocity, temperature and concentration profiles are 
addressed. 

2. FLOW ANALYSIS OF THE PROBLEM 

Effects of Soret and Dufour on steady, laminar, hydromagnet-
ic, axisymmetric flow of non-Newtonian Powell-Eyring fluid in be-
tween stretching rotating disks studied. Disks are separated verti-

cally by distance c and both of the disks are stretched outwardly 
with the velocity proportional to the radius of the disk. Considered 
flow is defined in non-rotating cylindrical polar coordinates 

(r, ψ, z) with z  is chosen as the vertical axis, and as 𝑟 and 𝜓 are 
radial and tangential axes. (u, v, w) are assumed to be the veloc-
ity components in the direction of cylindrical polar coordinates 
(r, ψ, z)  respectively. At the plane, z = 0  the lower disk is fixed, 
while the upper disk is fixed at the plane z = c. A transverse uni-
formly distributed magnetic field with a constant magnetic flux 

density B is applied vertically to the surface of the disk as shown 
in Fig. 1.  

The external electric field and the electric field due to the po-
larization of charges are assumed to be negligible. Furthermore, 
the magnetic Reynolds number Re  for the considered flow is a 

number much smaller than the fluid Reynolds number 𝑅𝑒𝑚  as 
the induced magnetic field is neglected. The continuity, momen-
tum, energy and concentration equations governing the magneto-
hydrodynamics flow of Powell-Eyring fluid for the problem with the 
related boundary condition can be written in the form: 
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Sij is the extra stress tensor for the Powell-Eyring model, V  is 

the velocity, ε  and b  are the material constant of the Powell-

Eyring fluid model, ρ   σ  and υ are the density, electric conductiv-

ity and viscosity of the fluid,  l  is a stretching disk parameter, η  is 
an unknown parameter to be determined later. Using suitable 
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Fig. 1. Physical model of considered flow 

Now using Eqs. (6) and (7)  in momentum, energy and con-
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Using Eq. (9) in Eq. (10) and by taking Eq. (14) with that, it 
can be seen that the system is overdetermined, so differentiation 
of Eq. (10) produces more compact expression: 
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The local skin-friction coefficients Cf at lower and upper disk 
and the heat transfer coefficient in terms of local Nusselt number 
Nu  are defined as under: 
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An unknown parameter can be determine using calculated 

value of F(Λ) and H(Λ). 
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3. ENTROPY GENERATION 

Entropy is a decisive physical concept originated from this 
law. The substantial consequence of altercation of momentum 
and energy as the fluid flows within the boundary is entropy gen-
eration succeeding the thermodynamic irreversibility of the sys-
tem. This is the decisive concept, whose origin is second order 
law of thermodynamics.  One part of entropy generation is due to 
heat transfer in the direction of temperature gradients, whereas 
others may be due to fluid friction irreversibility, Joule heating, 
viscous heating. Conferring to (Bejan, 1982, 1996, Arikoglu and 
Ozkol, 2008) the volumetric entropy generation rate for the con-
sidered axisymmetric flow of Powell-Eyring fluid in the presence 
of magnetic field is given by:  

𝑆𝐺

=
1

𝑇0
(

(
𝜕𝑢

𝜕𝑟
) 𝑆𝑟𝑟 + (

𝑢

𝑟
) 𝑆𝜓𝜓 + (

𝜕𝑤

𝜕𝑧
) 𝑆𝑧𝑧

+(
𝜕𝑢

𝜕𝑧
+
𝜕𝑤

𝜕𝑟
) 𝑆𝑟𝑧 + (

𝜕𝑣

𝜕𝑟
−
𝑣

𝑟
) 𝑆𝑟𝜓 + (

𝜕𝑣

𝜕𝑧
) 𝑆𝜓𝑧

) 

      +
𝑘

(𝑇0)
2
((
𝜕𝑇

𝜕𝑟
)
2

+ (
𝜕𝑇

𝜕𝑧
)
2

) +
𝜎 𝐵

𝑇0
(𝑢2 + 𝑣2) 

(21) 

As seen in above equation that the entropy generation equa-
tion consists of three parts. The first and second part refer the 
local entropy generation caused by fluid friction irreversibility and 
heat transfer irreversibility while the third part signifies magnetic 
field effects.  

In terms of dimensionless variable, entropy generation num-
ber defines as the ratio between the actual entropy generation 
rate and the characteristic entropy generation rate.  By using the 
transformation function, defined in Eq. (8), the entropy generation 
number for the considered flow problem turn out to be: 

𝑁𝐺 =
𝑆𝐺
𝑆𝐺0

=
4 Br

𝛿
 (𝐹(Λ))

2
+
2 Br

𝛿
 (𝐻′(Λ))

2

+ Br (𝐹′(Λ))
2

 

+𝜆(휃′(Λ))
2
+ Ha Re Br (𝐹(Λ))

2
 

(22) 

where:  𝜆 =
𝑇1−𝑇0

𝑇0
   and 𝑆𝐺0 =

𝑘(𝑇1−𝑇0)

𝑐2 𝑇0
.  

It can be seen from Eq. (18) that raise in the Brinkman num-
ber will result in the increase in entropy generation due to fluid 

friction irreversibility. Similarly as α  and Hartmann number in-
creases in the entropy generation due to heat transfer and the 
magnetic effect increases respectively. Bejan number provides 
information regarding irreversibility mechanism which plays a vital 
role in analyzing entropy generation. For the considered problem 
this dimensionless parameter ratio can be written as: 

Be =
𝜆 (휃′(Λ))

2

(

 
 

4 Br
𝛿
(𝐹(Λ))

2
+
2 Br
𝛿
(𝐻′(Λ))

2

+Br(𝐹′(Λ))
2
+ 𝜆 (휃′(Λ))

2

+Ha Re Br (𝐹(Λ))
2

)

 
 

 

(23) 

 



Najeeb Alam Khan, Shahnila Aziz, Saif Ullah                                                                                                                                                                 DOI 10.1515/ama-2017-0004 
Entropy Generation on MHD Flow of Powell-Eyring Fluid Between Radially Stretching Rotating Disk with Diffusion-Thermo and Thermo-Diffusion Effects 

24 

4. HOMOTOPY ANALYTIC SOLUTION 

In the past two decades, for analytical solution of lots of non-
linear problems in science and engineering, many researchers 
have applied Homotopy analysis method (HAM) successfully. 
HAM is employed to solve Eqs. (12), (13) and (16) subject to the 
boundary conditions (15) and (17). HAM solutions are an infinite 
power series for suitable initial approximation, which can be in 
turn, expressed in a closed form. Initial approximations and auxil-
iary linear operators have been selected as follows: 

𝐻(Λ) = −2Λ + 2(2 + 𝛾)Λ2 − 2(1 + 𝛾)Λ3,  

휃0(Λ) = Λ
2   and    휃0(Λ) = Λ

2 
(24) 

ℒ1(H) =
𝑑4𝐻

𝑑Λ4
 , ℒ2(θ) =

𝑑2휃

𝑑Λ2
  𝑎𝑛𝑑 ℒ3(H) =

𝑑2𝜙

𝑑Λ2
 (25) 

which was found to be quite efficient and has the property that: 

{

ℒ1[𝐶1 + 𝐶2Λ + 𝐶3Λ
2 + 𝐶4Λ

3] = 0

ℒ2[𝐶5 + 𝐶6Λ] = 0

ℒ3[𝐶7 + 𝐶8Λ] = 0

 (26) 

With Cn, n = 1,2… 8  are arbitrary constants. Now we con-
struct system of zeroth order deformation equation associated 
with the considered flow which is respectively, given by: 

(1 − 𝑥)ℒ1[𝐻(Λ, 𝑥) − 𝐻0(Λ)] = 𝑥 ℏ 𝑁𝐻 [𝐻(Λ, 𝑥)], 

(1 − 𝑥)ℒ2[휃(Λ, 𝑥) − 휃0(Λ)]
= 𝑥 ℏ 𝑁𝜃[𝐻(Λ, 𝑥), 𝐹(Λ, 𝑥), 𝜙(Λ, 𝑥)], 

(1 − 𝑥)ℒ3[𝜙(Λ, 𝑥) − 𝜙0(Λ)]
= 𝑥 ℏ 𝑁𝜙  [𝐻(Λ, 𝑥), 휃(Λ, 𝑥)]. 

(27) 

Subject to the boundary conditions: 

𝐻(0, 𝑥) = 0, 𝐻(1, 𝑥) = 0, 𝐻′(0, 𝑥) = −2,𝐻′(1, 𝑥)
= −2𝛾,  

휃′(0, 𝑥) = 0, 휃(1, 𝑥) = 1, 𝜙′(0, 𝑥) = 0, 𝜙(1, 𝑥) = 1 

(28) 

in which the nonlinear operators NH, Nθ  and Nϕ  are defined as: 

𝑁𝐻[𝐻(Λ, 𝑥)] = (1 + 𝑁)𝐻
′′′′(Λ) − Ha Re 𝐻′′(Λ) 

−Re 𝐻(Λ)𝐻′′′(Λ)

− 𝑁 𝐿

(

  
 

7(𝐻′′(Λ))
3
+ 20 𝐻′(Λ)𝐻′′(Λ)𝐻′′′(Λ)

+3 (𝐻′(Λ))
2
𝐻′′′′(Λ) +

3

2
𝛿(𝐻′′′(Λ))

2
𝐻′′(Λ)

+
3

4
𝛿 (𝐻′′(Λ))

2
𝐻′′′′(Λ) )

  
 

 

(29) 

𝑁𝜃[H(Λ, x), 𝐹(Λ, x), 𝜙(Λ, x)]
= 휃′′(Λ) − Pr Re𝐻(Λ)휃′(Λ) 

−Ha Br Re(𝐹(𝛬))
2
+ 𝐷𝑢 Pr𝜙′′(Λ) 

−(1 + 𝑁) 𝐵𝑟 (
4

𝛿
(𝐹(Λ))

2
+ (𝐹′(Λ))

2
+
2

𝛿
(𝐻′(Λ))

2
) 

+𝑁 𝐿 𝐵𝑟

(

 
 
8(𝐹(Λ))

2
(𝐹′(Λ))

2
+ 4(𝐹′(Λ))

2
(𝐻′(Λ))

2

+
16

𝛿
(𝐹(Λ))

4
+ 𝛿2(𝐹′(Λ))

4

+16(𝐻′(Λ))
2
(𝐹(Λ))

2
+ 4(𝐹′(Λ))

4

)

 
 

 

(30) 

𝑁𝜙[𝐻(𝛬, 𝑥), 휃(𝛬, 𝑥)] = 𝜙
′′(𝛬) + Sr Sc 휃′′(𝛬) 

                                           −Re Le Pr 𝐻(𝛬)𝜙′(𝛬) 
(31) 

Where parameter 𝑥 x  in above equations represents an em-

bedding parameter defined in the regime [0,1]. We have 

𝐻(𝛬, 0) = 𝐻0(𝛬), 𝐻(𝛬, 1) = 𝐻(𝛬), 

휃(𝛬, 0) = 휃0(𝛬), 휃(𝛬, 1) = 휃(𝛬), 

𝜙(𝛬, 0) = 𝜙0(𝛬), 𝜙(𝛬, 1) = 𝜙(𝛬) 

(32) 

Therefore as x  varies from 0 to 1, H(Λ, x), θ(Λ, x) and 

ϕ(Λ, x) continuously vary from H0(Λ) to H(Λ), θ0(Λ) to θ(Λ) 
and ϕ0(Λ) to  ϕ(Λ). This continuous variation is known as de-
formation in topology. By Taylor’s theorem and equation (32) 
yields the relations. 

𝐻(𝛬; 𝑥) = 𝐻0(𝛬) +∑𝐻𝑗(Λ) 𝑥
𝑗

∞

𝑖=1

 , 

휃(𝛬; 𝑥) = 휃0(𝛬) +∑휃𝑗(Λ) 𝑥
𝑗

∞

𝑖=1

 , 

𝜙(𝛬; 𝑥) = 𝜙0(𝛬) +∑𝜙𝑗(Λ) 𝑥
𝑗

∞

𝑖=1

 . 

(33) 

where: 

𝐻𝑗(Λ) =
1

𝑗!

𝜕𝑗𝐻(𝛬; 𝑥)

𝜕𝑥𝑗
|
𝑥=0

, 휃𝑗(Λ) =
1

𝑗!

𝜕𝑗휃(𝛬; 𝑥)

𝜕𝑥𝑗
|
𝑥=0

, 

𝜙𝑗(Λ) =
1

𝑗!

𝜕𝑗𝜙(𝛬;𝑥)

𝜕𝑥𝑗
|
𝑥=0

. 

The convergence of the series presented in Eqs. (33) is con-

tingent only on auxiliary parameter i.e. ℏ  as mentioned by Liao 
(2004), and assumed that this auxiliary parameter is carefully 
chosen  such that the series (33) converges at x = 1 then by 
reason of Eq. (32) we have:  

𝐻(𝛬; 𝑥) = 𝐻0(𝛬) +∑𝐻𝑗(Λ)

∞

𝑖=1

 , 

휃(𝛬; 𝑥) = 휃0(𝛬) +∑휃𝑗(Λ)

∞

𝑖=1

 , 

𝜙(𝛬; 𝑥) = 𝜙0(𝛬) +∑𝜙𝑗(Λ)

∞

𝑖=1

 . 

(34) 

Now for the jth order deformation equations, differentiating Eq.  

(27) 𝑗-times with respect to 𝑥  divided by 𝑗! and then set 𝑥 = 0  
one obtain 

ℒ1[𝐻𝑗(𝛬) − 휁𝐻𝑗−1(𝛬)] = ℏ ℛ𝐻
𝑗 (𝛬) , 

ℒ2[휃𝑗(𝛬) − 휁휃𝑗−1(𝛬)] = ℏ ℛ𝜃
𝑗 (𝛬) , 

ℒ3[𝜙𝑗(𝛬) − 휁𝜙𝑗−1(𝛬)] = ℏ ℛ𝜙
𝑗 (𝛬) . 

(35) 

with boundary condition: 

𝐻(0, 𝑥) = 0, 𝐻(1, 𝑥) = 0, 𝐻′(0, 𝑥) = −2 ,  

𝐻(1, 𝑥) = −2𝛾, 휃′(0, 𝑥) = 0, 휃(1, 𝑥) = 1,    

𝜙′(0, 𝑥) = 0, 𝜙(1, 𝑥) = 1 

(36) 
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Here ζj = {
0,   j ≥ 1
1,   j > 1 

 and ℛH
j
, ℛθ

j
  and ℛϕ

j
 are respectively 

given: 

ℛ𝐻
𝑗
= (1 + 𝑁)𝐻𝑗−1

′′′ −𝐻𝑎 𝑅𝑒 𝐻𝑗−1
′′ − 𝑅𝑒 ∑𝐻𝑖  𝐻𝑗−1−𝑖

′′′

𝑗−1

𝑖=0

 

−𝐿 𝑁

(

 
 
 
 
 
 
 
 
 
 
 
 
 7 ∑  𝐻𝑗−1−𝑖

′′

𝑗−1

𝑖=0

∑𝐻𝑖−𝑚
′′  𝐻𝑚

′′

𝑖

𝑚=0

+20∑ 𝐻𝑗−1−𝑖
′

𝑗−1

𝑖=0

∑𝐻𝑖−𝑚
′′  𝐻𝑚

′′

𝑖

𝑚=0

+3∑ 𝐻𝑗−1−𝑖
′′′′

𝑗−1

𝑖=0

∑𝐻𝑖−𝑚
′  𝐻𝑚

′

𝑖

𝑚=0

+
3

2
𝛿∑ 𝐻𝑗−1−𝑖

′′

𝑗−1

𝑖=0

∑𝐻𝑖−𝑚
′′′  𝐻𝑚

′′′

𝑖

𝑚=0

+
3

4
𝛿∑ 𝐻𝑗−1−𝑖

′′′′

𝑗−1

𝑖=0

∑𝐻𝑖−𝑚
′′  𝐻𝑚

′′

𝑖

𝑚=0 )

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

ℛ𝜃
𝑗
= 휃𝑗−1

′′ − Pr 𝑅𝑒∑𝐻𝑖  휃𝑗−1−𝑖
′ + Du Pr 𝜙𝑗−1

′′

𝑗−1

𝑖=0

 

−
1

4
Ha Br Re∑𝐻𝑖

′ 𝐻𝑗−1−𝑖
′

𝑗−1

𝑖=0

 

−Br(1 + 𝑁)(
3

𝛿
∑𝐻𝑖

′ 𝐻𝑗−1−𝑖
′

𝑗−1

𝑖=0

+
1

4
∑𝐻𝑖

′′ 𝐻𝑗−1−𝑖
′′

𝑗−1

𝑖=0

) 

+𝐿 𝑁 Br 

(

 
 
 
 
 
 
 

3

2
∑ 𝐻𝑗−1−𝑖

′′ ∑𝐻𝑖−𝑚
′  𝐻𝑚

′

𝑖

𝑚=0

𝑗−1

𝑖=0

+
9

𝛿
∑  𝐻𝑗−1−𝑖

′ ∑𝐻𝑖−𝑚
′

𝑖

𝑚=0

∑𝐻𝑚−𝑦
′  𝐻𝑦

′

𝑚

𝑦=0

𝑗−1

𝑖=0

+
𝛿

16
∑  𝐻𝑗−1−𝑖

′′ ∑𝐻𝑖−𝑚
′′

𝑖

𝑚=0

∑𝐻𝑚−𝑦
′′  𝐻𝑦

′′

𝑚

𝑦=0

𝑗−1

𝑖=0 )

 
 
 
 
 
 
 

 

 

ℛ𝜙
𝑗
= 𝜙𝑗−1

′′ + Sr Sc 휃𝑗−1
′′ − Re Le Pr ∑𝐻𝑖  𝜙𝑗−1−𝑖

′

𝑗−1

𝑖=0

 

On solving Eq. (35) along with Eq. (36), the analytical solution 
for velocity, temperature and concentration profiles are obtained. 
Unlike all other analytic methods, the HAM make available a sim-
ple mode to regulate the rate of approximations and control the 
convergence region of the series solution, ensured by taking the 

most suitable value of the non-zero auxiliary parameter ℏ. Conse-
quently, the auxiliary parameter shows vital role in the frame 

of the HAM which can be defined by the so-called ℏ-curves. For 

this purpose ℏ -curves are plotted in Fig. (2) which shows the 
admissible range. 

 
Fig. 2. ℏ curves 

5. DISCUSSION OF RESULTS 

In this section, we present our findings i.e. the influence of 
pertinent parameters on velocity, temperature, pressure and con-
centration fields, in graphical form along with their interpretation. 
Also, graphical representations of entropy generation and Bejan 
number have presented to see the behavior of involved parame-
ters. The considered mathematical flow problem has been defined 
in Eqs. (12), (13) and (16) together with the boundary conditions 
Eq. (15) and (17) have been solved analytically via HAM. Ob-
tained results of the velocity and temperature fields have been 
used to compute the entropy generation and Bejan number. Ex-
hibited results showing a comparison between HAM solutions with 
those generated by using optimized HAM. To validate the results 
comparison was made. An excellent correspondence between two 
methods is achieved, as seen in Figures 3-6. 

 
Fig. 3. Effect of  γ  on   F(Λ) and H(Λ)  with 

           𝛿 = 0.1,𝐻𝑎 = 2,𝑅𝑒 = 5, 𝐿 = 0.1,𝑁 = 0.1 
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Fig. 4. Effect of  N  on F(Λ) and H(Λ)  with 

           𝛿 = 0.1,𝐻𝑎 = 2,𝑅𝑒 = 5, 𝐿 = 0.1, 𝛾 = 0.2 

 
Fig. 5. Effect of  Ha on F(Λ) and H(Λ)  with 

           𝛿 = 0.1, 𝛾 = 0.2, 𝑅𝑒 = 5, 𝐿 = 0.1, 𝑁 = 0.1 

Figs. 3-6 are sketched to see the variations of the Powell-
Eyring parameter  𝑁, stretching disk parameter 𝛾, Hartmann 

number  Ha  and Reynolds number Re  on dimensionless velocity 

profiles in radial 𝐹(Λ) and axial direction 𝐻(Λ). Fig. 3 clarifies 
that dimensionless 𝐻(Λ) declines first and then starts to increase 

due to increase in 𝑁 and at upper disk it gets vanish, after attain-

ing certain values while dimensionless 𝐹(Λ)  decreases and it 

increases gradually. For 𝛾  Fig. 4 elucidates that the increment in 
𝛾  declines first and then rapidly rises 𝐻(Λ) and at the upper disk 
it dies out, however, diminutions near lower disk and maximum 

amplification nearby upper disk in 𝐹(Λ)  can be seen. Fig. 5 de-

picts that the magnitude of  𝐻(Λ) gets weakens adjacent to the 

lower disk as the Ha increases. Behind this Lorentz force is the 
reason, which opposes the motion of fluid. Further, it slowly in-
creases and approaches to zero. 𝐹(Λ) decreases with the rise in 

Ha  and after getting some point it starts increasing. As the 

increase in Re  results the increase in 𝐻(Λ), therefore the viscos-
ity of Powell-Eyring fluid decreases and stretching of disks have 
not been considerably influential for a less viscous fluid. Whereas 

𝐹(Λ)  decreases first and when the Re increase enough it starts 
increasing (see Fig. 6). It is quite obvious from all the graphs of 

𝐻(Λ) that axial velocity at lower disk decreases and it turns into a 
radial component of the disk and also it disappears at the upper 
disk. 

 
Fig. 6. Effect of Re on F(Λ) and H(Λ)  with  
           𝛿 = 0.1,𝐻𝑎 = 2, 𝛾 = 0.2, 𝐿 = 0.1,𝑁 = 0.1 

 
Fig. 7. Effect of γ on P(Λ) with  
           𝛿 = 0.1,𝐻𝑎 = 2,𝑅𝑒 = 5, 𝐿 = 0.1,𝑁 = 0.1 

 
Fig. 8. Effect of N on P(Λ) with  

            𝛿 = 0.1,𝐻𝑎 = 2, 𝑅𝑒 = 5, 𝐿 = 0.1, 𝛾 = 0.2 
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Fig. 9. Effect of Ha on P(Λ)  with 

           𝛿 = 0.1, 𝛾 = 0.2, 𝑅𝑒 = 5, 𝐿 = 0.1, 𝑁 = 0.1 

 
Fig. 10. Effect of Re on P(Λ)  with 

             𝛿 = 0.1,𝐻𝑎 = 2, 𝛾 = 0.2, 𝐿 = 0.1,𝑁 = 0.1 

 
Fig. 11. Effect of γ  on θ(Λ) and ϕ(Λ)  with 

     δ = 0.1, Du = 0.5, Le = 1, Ha = 2, Sc = 0.3, Sr = 0.4, 
             Re = 1, Pr = 0.7, Br = 0.14, 𝐿 = 0.1,𝑁 = 5 

Fig. 7-10 reveals the effects of the various parameter against 
pressure profile (Λ). It is illustrated by Figs. 7-8 that P(Λ) be-

comes strengthen as γ  and Ha  enhances but after reaching the 

particular point it comes to drop. An increase in N  and Re, P(Λ) 
turn out to be diminished as shown in Figs. 9-10. 

 
Fig. 12. Effect of  N on θ(Λ) and  ϕ(Λ) with 

     𝛿 = 0.1, 𝐷𝑢 = 0.5, 𝐿𝑒 = 1,𝐻𝑎 = 2, 𝑆𝑐 = 0.3, 𝑆𝑟 = 0.4, 
             𝑅𝑒 = 1, 𝑃𝑟 = 0.7, 𝐵𝑟 = 0.14, 𝐿 = 0.1, 𝛾 = 0.2 

 
Fig. 13. Effect of  Br on  θ(Λ) and  ϕ(Λ) with 

     𝛿 = 0.1, 𝐷𝑢 = 0.5, 𝐿𝑒 = 1,𝐻𝑎 = 2, 𝑆𝑐 = 0.3, 𝑆𝑟 = 0.4, 
             𝑅𝑒 = 5, 𝑃𝑟 = 0.7,𝑁 = 5, 𝐿 = 0.1, 𝛾 = 0.2 

Effects of flow parameters on temperature θ(Λ)  and concen-

tration ϕ(Λ) fields are displayed in Figs. 11-20. The effect of γ  

and N  on θ(Λ) and ϕ(Λ) are given in Figs. 11 and 12. These 
figures illustrate that an increment in N  and γ  accelerates θ(Λ) 
and decelerates ϕ(Λ). According to Figs. 13 as Brinkman num-

ber intensifies θ(Λ) also intensify on the other hand ϕ(Λ)  first 
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increases near the lower disk and then starts to decline and at the 
upper disk it gets constant. In Fig. 14-15 it can be observed that 

due to increase in Pr and Re, θ(Λ) rises due to this thickness 
of thermal boundary layer and reduces ϕ(Λ).  

 
Fig. 14. Effect of  Pr on θ(Λ) and  ϕ(Λ) with 

     𝛿 = 0.1, 𝐷𝑢 = 0.5, 𝐿𝑒 = 1,𝐻𝑎 = 2, 𝑆𝑐 = 0.3, 𝑆𝑟 = 0.4, 
             𝑅𝑒 = 5, 𝛾 = 0.5, 𝐵𝑟 = 0.14, 𝐿 = 0.1,𝑁 = 5 

 
Fig. 15. Effect of Re  on θ(Λ) and ϕ(Λ)  with 

      𝛿 = 0.1, 𝐷𝑢 = 0.5, 𝐿𝑒 = 1,𝐻𝑎 = 2, 𝑆𝑐 = 0.3, 𝑆𝑟 = 0.4, 
              𝛾 = 0.2, 𝑃𝑟 = 0.7, 𝐵𝑟 = 0.14, 𝐿 = 0.1,𝑁 = 5 

 

 
Fig. 16. Effect of  Ha on θ(Λ) and ϕ(Λ)  with 

     𝛿 = 0.1, 𝐷𝑢 = 0.5, 𝐿𝑒 = 1, 𝛾 = 0.5, 𝑆𝑐 = 0.3, 𝑆𝑟 = 0.4, 
              𝑅𝑒 = 5, 𝑃𝑟 = 0.7, 𝐵𝑟 = 0.14, 𝐿 = 0.1,𝑁 = 5 

 
Fig. 17. Effect of  Sc on θ(Λ) and  ϕ(Λ) with 

              𝛿=0.1, Du=0.5, Le=1, Ha=2, γ=0.2,Sr=0.3, 
             𝑅𝑒 = 5, 𝑃𝑟 = 0.7, 𝐵𝑟 = 0.14, 𝐿 = 0.1, 𝑁 = 5 

Since a drag force has the effect of decay and ultimately 

thickening of the thermal boundary layer and reduction in ϕ(Λ) 
having noticed as the Ha gets stronger (see Fig. 16). Similar ef-
fects have been observed for Soret and Schmidt number from 
Figs. 17 and 18. For large amounts of Soret and Schmidt number 
θ(Λ) is larger and these numbers have the thickening effect on 
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thermal boundary layer, however, ϕ(Λ) has its maximum value at 
the lower disk and drops near the upper disk. Fig. 19 and 20 de-
pict that the effect of Dufour and Lewis number are alike. With the 
increase in Dufour and Lewis number θ(Λ) come to enhance and 

ϕ(Λ) becomes depreciated. 

 
Fig. 18. Effect of Re  on θ(Λ) and ϕ(Λ)  with 

     𝛿 = 0.1, 𝐷𝑢 = 0.5, 𝐿𝑒 = 1,𝐻𝑎 = 2, 𝑆𝑐 = 0.3, 𝑆𝑟 = 0.4, 
             𝛾 = 0.2, 𝑃𝑟 = 0.7, 𝐵𝑟 = 0.14, 𝐿 = 0.1,𝑁 = 5 

 
Fig. 19. Effect of Le  on θ(Λ) and ϕ(Λ)  with 

             𝛿 = 0.1, 𝐷𝑢 = 0.5, 𝛾 = 0.2,𝐻𝑎 = 2, 𝑆𝑐 = 0.3, 𝑆𝑟 = 0.4, 
             𝑅𝑒 = 5, 𝑃𝑟 = 0.7, 𝐵𝑟 = 0.14, 𝐿 = 0.1, 𝑁 = 5 

 

 
Fig. 20. Effect of Du  on θ(Λ) and ϕ(Λ)  with 

    𝛿 = 0.1, 𝛾 = 0.2, 𝐿𝑒 = 1,𝐻𝑎 = 2, 𝑆𝑐 = 0.3, 𝑆𝑟 = 0.4, 
              𝑅𝑒 = 5, 𝑃𝑟 = 0.7, 𝐵𝑟 = 0.14, 𝐿 = 0.1,𝑁 = 5 

The variation in entropy generation number 𝑁𝐺   and Bejan 
number Be  are plotted in Fig. 21-25.   

 
Fig. 21. Effect of  γ on  NGand Be  with 

             𝛿 = 0.3, 𝜆 = 0.4, 𝐷𝑢 = 0.5, 𝐿𝑒 = 0.1, 𝑆𝑐 = 0.1, 𝑆𝑟 = 0.2, 
        𝐵𝑟 = 0.14,𝑃𝑟 = 0.7,𝐻𝑎 = 2, 𝑅𝑒 = 5, 𝐿 = 0.1, 𝑁 = 0.1 
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Fig. 22. Effect of  N on NG and Be with 

         𝛿 = 0.3, 𝜆 = 0.4, 𝐷𝑢 = 0.5, 𝐿𝑒 = 0.1, 𝑆𝑐 = 0.1, 𝑆𝑟 = 0.2, 
      𝐵𝑟 = 0.14, 𝑃𝑟 = 0.7, 𝐻𝑎 = 2,𝑅𝑒 = 5, 𝐿 = 0.1, 𝛾 = 0.25 

 

 
Fig. 23. Effect of Ha  on NG and Be  with 
       𝛿 = 0.3, 𝜆 = 0.4, 𝐷𝑢 = 0.5, 𝐿𝑒 = 0.1, 𝑆𝑐 = 0.1, 𝑆𝑟 = 0.2, 
     𝐵𝑟 = 0.14, 𝑃𝑟 = 0.7, 𝛾 = 0.25, 𝑅𝑒 = 5, 𝐿 = 0.1,𝑁 = 0.1 

As γ  gets stronger, entropy generation also gets stronger and 
energy loss is maximized at the lower and upper disk but flatten in 

between the disk. Although the Bejan number increases as γ 
augments and declines as one goes downstream. Near the lower 

disk variation in Be  due to γ  are negligible but farther than in the 
flow regime entropy effect due to fluid friction and magnetic field 

becomes fully dominant (see Fig. 21). Fig. 22 shows NG is maxi-
mum at lower disk due to stretching of the disk, and decreases as 

the  N increases far away but at the upper disk, it slowly increas-
es. Further, Be  gradually increases thus entropy effect due to 
heat transfer gets strong and near the upper disk, it comes to 

weak. Fig. 23 illustrates that as Ha  gets stronger, energy loss is 
maximum at the lower disk and far away the disk energy loss 
steadily decreases but at the upper disk it increases a little bit. 

Moreover, from the same figure, it can be seen that due to Ha  
intensification effect of entropy due to heat transfer becomes 
clearly prominent. 

 
Fig. 24. Effect of Re  on NG and Be  with 

        𝛿 = 0.3, 𝜆 = 0.4, 𝐷𝑢 = 0.5, 𝐿𝑒 = 0.1, 𝑆𝑐 = 0.1, 𝑆𝑟 = 0.2, 
      𝐵𝑟 = 0.14, 𝑃𝑟 = 0.7,𝐻𝑎 = 2, 𝛾 = 0.25, 𝐿 = 0.1,𝑁 = 0.1 

 
Fig. 25. Velocity vector u for = 0.25, 0.50, 

          𝛿 = 0.3, 𝜆 = 0.4, 𝐷𝑢 = 0.5, 𝐿𝑒 = 0.1, 𝑆𝑐 = 0.1, 𝑆𝑟 = 0.2, 
              𝐵𝑟 = 0.14, 𝑃𝑟 = 0.7, 𝑅𝑒 = 5, 𝐿 = 0.1,𝑁 = 0.1 
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Due to an increase in Re  entropy generation has larger value 
at the lower disk, but as it moves farther from the lower disk it 

shows the reverse behavior as portray in Fig.24. The effects of Re 
on Be  are also shown in Fig. 24 for large Re  two different trends 
are noticed. The effect of fluid heat transfer irreversibility domi-
nates over fluid friction and magnetic field irreversibility near the 
surface of the lower disk as the Re  increases while far away in 
the flow regime, the heat transfer irreversibility lessen. Further-
more, fluid friction and magnetic field irreversibility again become 
stronger whereas at upper disk the heat transfer irreversibility 
becomes strong and fully dominant. Fig. 25 and 26 are depicted 

for velocity components u,w for different stretching parameters 
γ = 0.25, 0.5  respectively. 

 
Fig. 26. Velocity vectors wfor γ = 0.25, 0.50, 

              𝛿 = 0.3, 𝜆 = 0.4, 𝐷𝑢 = 0.5, 𝐿𝑒 = 0.1, 𝑆𝑐 = 0.1, 𝑆𝑟 = 0.2, 
              𝐵𝑟 = 0.14, 𝑃𝑟 = 0.7, 𝑅𝑒 = 5, 𝐿 = 0.1,𝑁 = 0.1 

The comparison between our results and the results reported 
by Gorder et al. (2009). When we put 𝑁 = 0, 𝐿 = 0  Eq. (16) 
it will reduces for the Newtonian fluid as Gorder et al. (2009) have 
presented. 

6. CONCLUSION 

The present study is focused on the analytical exploration of 
the flow and entropy generation characteristics associated with 
the steady laminar incompressible flow of Powell-Eyring fluid be-
tween two stretching rotating disks in the presences of applied 
magnetic field. The magnetic field is taken as constant and acting 
only in the axial direction. The system of the nonlinear ordinary 
differential equation derived after using appropriate similarity func-
tions. HAM has applied to solve the arising nonlinear ODEs and a 
comparison with the results obtained from OHAM have been 
made to corroborate the results which were obtained by HAM. An 
excellent confirmation of results has observed. Acquired results 
were sketched graphically and the effects of pertinent parameters 
discussed thoroughly. For the considered problem Skin friction 
coefficient and local Nusselt number were represented mathemat-
ically. Entropy generation and Bejan number were also rendered 

and presented explicitly for the different values of involved param-
eters. 

In this study acquired results concluded in such a manner that 
these will use to improve the optimality and efficiency of a ther-
mally designed flow system and to reduce the energy loss within 
the system by taking the suitable values of flow parameters.  
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Nomenclature: 𝐵 – Magnetic flux density (T), Be – Bejan number,  

Br – Brinkman number, 𝐶 – Concentration of fluid (m−3 mol), 
C1, C2, … . C8 – Arbitrary constants, Cf – Coefficient of skin friction,  

𝐶𝑝 – Specific heat at constant pressure (N m kg−1K−1),  Cs – Con-
centration susceptibility of fluid, Dm – Molecular diffusion coefficient, Du 

– Dufour number, Ec  – Eckert number, 𝐹, 𝐺, 𝐻 – Dimensionless radial, 

tangential and axial velocities, Ha – Hartmann number, Kt – Thermal 

diffusion ratio, 𝐿 – Powell-Eyring parameter, ℒ – Auxiliary linear operator, 

Le – Lewis number, 𝑁 – Powell-Eyring Parameter, 𝑁𝐺  – Entropy genera-

tion number, Nu – Nusselt number, 𝑃 – Dimensionless pressure,  

Re – Wall stretching Reynolds number, Re𝑚 – Magnetic Reynolds num-

ber, 𝑆𝑖𝑗 – Extra stress tensor of Powell-Eyring fluid, Sc – Schmidt num-

ber, Sr – Soret number, 𝑆𝐺 – Volumetric entropy generation rate J K−1, 

SG0 – Characteristic entropy generation rate (J K−1), 𝑇 – Temperature 
of fluid (K), Tm – Mean fluid temperature (K), 𝑽 – Velocity of fluid 

(m s−1), 𝑏 – Material constant for Powell-Eyring fluid, 𝑐 – Distance 
between two disks (m), 𝑘 – Thermal conductivity of fluid 

(W m−1 K−1), 𝑙 – Stretching disk parameter, 𝑝 – Pressure of fluid 
(Pa), 𝑞 – Embedding parameter, 𝑟, 𝜓, 𝑧 – Coordinate axes, 𝑢, 𝑣, 𝑤 – 

Dimensional 𝑟, 𝜓  and 𝑧 components of velocity (m s−1),  
𝛼 – Fluid thermal diffusivity (m2 s−1), 휀 – Material constant for Powell-
Eyring fluid, 𝛾 – Ratio of stretching velocity of the upper disk to the lower 

disk, 𝛿 – Dimensionless ratio of the radius of the disk to the distance 

between them, ℏ – Auxiliary non-zero operator, 휂 – Unknown parameter, 

𝜇 – Dynamic viscosity of fluid (Kg m−1 s−1), 𝜈 – Kinematic viscosity 

(m2 s−1), Ω – Angular velocity of disk (s−1),  𝜙 – Dimensionless con-
centration of fluid, 휃 – Dimensionless temperature of fluid, 𝜌 – Density 

of fluid (Kg m−3), 𝜎 – Electric conductivity (Ω−1 m−1). 

 

 
 

 


