PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparison of Sensitivity of Autotrophic and Heterotrophic Microorganisms to the Pollution of Natural Water with Rare Earth Elements (Lanthanum and Cerium)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The purpose of the work was to compare the sensitivity of autotrophic and heterotrophic organisms used in bioassay to lanthanum and cerium under the conditions of a model experiment with aqueous media. Using bioassay methods, the pre-lethal effects of La and Ce in heterotrophic Paramecium caudatum and Escherichia coli, as well as autotrophic Chlorella vulgaris and Nostoc linckia were determined. Model solutions of La2 (SO4)3∙8H2O and Ce2 (SO4)3∙8H2O were tested in the concentration range of 0.1–200 mg/l. As a result, it was shown that heterotrophic organisms are more sensitive to water pollution with La and Ce than autotrophic ones. According to the totality of experiments, cerium turned out to be more toxic than lanthanum. When planning the environmental studies of wastewater or reservoirs polluted with REE, it is recommended to focus on comparative sensitivity of bioassay methods, taking into account the test-functions used: bioassay for chemotaxis of P. caudatum > bioassay for changes in bioluminescence of E. coli (strain M-17) > bioassay for the content of chlorophyll а and intensity of lipid peroxidation in N. linckia > bioassay on the increase in the number of Cl. vulgaris.
Rocznik
Strony
58--63
Opis fizyczny
Bibliogr. 31 poz., tab.
Twórcy
  • Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, 152742, Borok, Nekouzskii region, Yaroslavl oblast, Russian Federation
  • Vyatka State University, 36 Moskovskaya St, Kirov, 610000, Russian Federation
  • Northern Trans-Ural State Agricultural University, Agrotechnological Institute, Ulitsa Respubliki, 7, Tyumen, Tyumen region, 625003, Russian Federation
  • Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, 152742, Borok, Nekouzskii region, Yaroslavl oblast, Russian Federation
  • Vyatka State University, 36 Moskovskaya St, Kirov, 610000, Russian Federation
Bibliografia
  • 1. Aharchaou I., Beaubien C., Campbell P.G.C., Fortin C. 2020. Lanthanum and Cerium Toxicity to the Freshwater Green Alga Chlorella fusca: Applicability of the Biotic Ligand Model. Environmental Toxicology and Chemistry, 39(5), 996–1005. https://doi.org/10.1002/etc.4707
  • 2. Aminot A., Rey F. 2000. Standard procedure for the determination of chlorophyll a by spectroscopic methods. ICES Techniqnes in Marine Environmental Sciences: Denmark, Copengagen.
  • 3. Barry M.J., Meehan B.J. 2000. The acute and chronic toxicity of lanthanum to Daphnia carinata. Chemosphere, 41(10), 1669-1674. doi:10.1016/s0045-6535(00)00091-6
  • 4. Baryla A., Laborde C., Montillet J.-L., Triantaphylides A., Chagvardie P. 2000. Evaluation of lipid peroxidation as a toxicity bioassay for plants exposed to copper. Environmental Pollution, 109, 131–135. https://doi.org/10.1016/S0269-7491(99)00232-8
  • 5. Canovas C.R., Basallote M.D., Macias F. 2020. Distribution and availability of rare earth elements and trace elements in the estuarine waters of the Ria of Huelva (SW Spain). Environmental pollution. https://doi.org/10.1016/j.envpol.2020.115506
  • 6. Chakdar H., Jadhav S.D., Dhar D.W., Pabbi S. 2012. Potential application of blue green algae. Journal of Scientific and Industrial Research, 71(1), 13–20.
  • 7. Dang D.H., Zhang Z.R. 2021. Hazardous motherboards: Changes in metal contamination related to the evolution of electronictechnologies. Environmental pollution. http://doi.org/10.1016/j.envpol.2020.115731
  • 8. Environmental Regulatory Document PND F T 14.1:2:3:4.11-04. T.16.1:2:3:3.8-04. 2010. Method for determining the integrated toxicity of surface waters, including marine, ground, drinking, waste waters, water extracts from soils, waste, sewage sludge by changes in bacterial bioluminescence using the “Ecolum test-system”. Nera-S, Moscow
  • 9. Erofeeva E.A. 2014. Hormesis and paradoxical effects upon exposure to pollutants. Dose-Response, 12(1), 121–135. https://dx.doi.org/10.2203%2Fdoseresponse.13-017.Erofeeva
  • 10. Fan X., Xue Q., Liu S.W., Tang J., Qiao J.Y., Huang Y.Y., Sun J.M., Liu N.N. 2021. The influence of soil particle size distribution and clay minerals on ammonium nitrogen in weathered crust elution-deposited rare earth tailing. Ecotoxicology and Environmental Safety. https://doi.org/10.1016/j.ecoenv.2020.111663
  • 11. Federal Register FR 1.39.2007.03223. 2007. Method for determining the toxicity of water, water extracts from soils, sewage sludge and waste by changing the level of chlorophyll fluorescence and the number of algae cells. Akvaros, Moscow.
  • 12. Federal Register FR 1.39.2015.19242. 2015. Environmental Regulatory Document PND F T 16.2:2.298. Methodology for determining the toxicity of samples of natural, drinking, domestic and drinking, household waste, treated sewage, waste, thawed, technological water by the express method using the Biotester device. SPEKTR-M, St. Petersburg.
  • 13. Gonzalez R.M., Canovas C.R., Olias M., Macias F. 2020. Rare earth elements in a historical mining district (south-west Spain): Hydrogeochemical behaviour and seasonal variability. Chemosphere. https://doi.org/10.1016/j.chemosphere.2020.126742
  • 14. González V., Vignati D.A.L., Pons M.N., Montarges‐Pelletier E., Bojic C., Giamberini L. 2015. Lanthanide ecotoxicity: First attempt to measure environmental risk for aquatic organisms. Environmental pollution, 199, 139–147. https://doi.org/10.1016/j.envpol.2015.01.020
  • 15. GOST R 54496-2011 (ISO 8692: 2004). 2012. Water. Determination of toxicity with the use of green freshwater unicellular algae. Standartinform, Russia.
  • 16. He X.Y., Yuan T., Jiang X.Y., Yang H., Zheng C.L. 2021. Effects of contaminated surface water and groundwater from a rare earth mining area on the biology and the physiology of Sprague-Dawley rats. Science of The Total Environment. https://doi.org/10.1016/j.scitotenv.2020.144123
  • 17. Itoh A., Yaida A., Zhu Y. 2021. Potential Anthropogenic Pollution of High-technology Metals with a Focus on Rare Earth Elements in Environmental Water. Analytical sciences, 37(1), 131–143. http://dx.doi.org/10.2116/analsci.20SAR16
  • 18. Korotkov S., Konovalova S., Emelyanova L., Brailovskaya I. 2014. Y3+, La3+, and some bivalent metals inhibited the opening of the Tl+ ‐ induced permeability transition pore in Ca2+ ‐ loaded rat liver mitochondria. Journal of Inorganic Biochemistry, 141, 1–9. https://doi.org/10.1016/j.jinorgbio.2014.08.004
  • 19. Kotelnikova А., Fastovets I., Rogova O., Volkov D.S., Stolbova V. 2019. Toxicity assay of lanthanum and cerium in solutions and soil. Exotoxicology and Environmental Safety, 167, 20–28. https://doi.org/10.1016/j.ecoenv.2018.09.117
  • 20. Kulaksiz S., Bau M. 2011. Rare earth elements in the Rhine River, Germany: First case of anthropogenic lanthanum as a dissolved microcontaminant in the hydrosphere. Environment international, 37(5), 973–979. https://doi.org/10.1016/j.envint.2011.02.018
  • 21. Lukatkin A.S. 2002. Cold damage to heat-loving plants and oxidative stress. Publishing house of Mordov. University, Saransk.
  • 22. Olkova A.S, Berezin G.I. 2019. Study on the sensitivity of certified bioassays to water pollution with modern herbicides: model experiments. Water and ecology: problems and solutions, 2(78), 111–119. http://dx.doi.org/10.23968/2305-3488.2019.24.2.111-119
  • 23. Olkova A., Berezin G. 2021. Battery of Bioassays for Diagnostics of Toxicity of Natural Water when Pollution with Aluminum Compounds. Journal of Ecological Engineering, 22(2), 195–199. https://doi.org/10.12911/22998993/131029
  • 24. Olkova A.S., Mahanova E.V. 2018. Selection of bioassay for ecological research of water, polluted by mineral nitrogen forms. Water and ecology: problems and solutions, 4(76), 70–81. http://dx.doi.org/10.23968/2305-3488.2018.23.4.70-81
  • 25. Petersen S.A., Sanville W.D., Stay F.S., Powers C.F. 1974. Nutrient Inactivation as a Lake Restoration Procedure Laboratory Investigations. Report EPA660/3-74-032 ed. Corvallis, Oregon.
  • 26. Reed K.C., Bygrave F.L. 1974. The inhibition of mitochondrial calcium transport by lanthanides and ruthenium red. Biochemistry Journal, 140, 143–155.
  • 27. Scanlan D. 2001, Cyanobacteria: Ecology, niche adaptation and genomic. Microbiology Today, 28(3), 128–130.
  • 28. Smida O., Souissi R., Salem M., Souissi F. 2021. Geochemical Assessment and Mobility of Undesired Elements in the Sludge of the Phosphate Industry of Gafsa-Metlaoui Basin, (Southern Tunisia). Applied Sciences. https://doi.org/10.3390/app11031075
  • 29. Sneller F.E.C., Kalf D.F., Weltje L., Van Wezel A.P. 2000. Maximum Permissible Concentrations and Negligible Concentrations for Rare Earth Elements (REEs). RIVM report 601501 011. Rijksinstituut voor Volksgezondheid en Milieu, Netherlands.
  • 30. Squadrone S., Brizio P., Stella C., Mantia M., Favaro L., Biancani B., Gridelli S., Da Rugna C., Abete M.C. 2020. Differential Bioaccumulation of Trace Elements and Rare Earth Elements in the Muscle, Kidneys, and Liver of the Invasive IndoPacific Lionfish (Pteroisspp.) from Cuba. Biological Trace Element Research, 196, 262–271. https://doi.org/10.1007/s12011-019-01918-w
  • 31. Stauber J.L., Binet M.T. 2000. Canning River Phoslock field trials—Ecotoxicity testing final report. ET 317R. CSIRO Land and Water, Clayton, Australia; WA Waters and Rivers Commission, East Perth, Australia.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-937f2a05-5074-4096-b963-0f000816dac3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.