PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Determination of the Effect of Sidewall Friction in Reinforced Soil Retaining Wall Experiments

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Asimple approach to estimate sidewall friction in reinforced soil model experiments conducted in parallel-sided test boxes with unlubricated walls is proposed. Analytical solutions are developed for reinforced soil slopes and retaining walls subjected to self-weight or external loading. It turns out that the frictional effect depends on the shape of the failure zone and the value of friction coefficient between soil and a sidewall material. The theoretical predictions were verified in laboratory experiments in a test box with lubricated and unlubricated sidewalls. It was shown that the method can be used to estimate sidewall friction not only under failure conditions, but also under all stages of surcharging prior to failure.
Rocznik
Strony
137--158
Opis fizyczny
Bibliogr. 19 poz., rys.
Twórcy
  • Institute of Hydro-Engineering, Polish Academy of Sciences, ul. Kościerska 7, 80-953 Gdańsk, Poland
Bibliografia
  • Bransby P. L., Smith I. (1975) Side Friction in Model Retaining-Wall Experiments, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 101, GT7, 1975, 615–632, DOI:10.1016/0148-9062(75)90327-7.
  • Bathurst R. J., Benjamin D. J. (1987) Preliminary Assessment of Sidewall Friction on Large-Scale Wall Models in the RMC Test Facility, The Application of Polymeric Reinforcement in Soil Retaining Structures, NATO Advanced Study Institutes Series, Kluwer Academic Publishers, 1987, 181–192.
  • Bathurst R. J., Jarrett P. M. (1986) Class A Prediction Exercise for Reinforced EarthWalls, Bulletin No. 1 for NATOAdvanced ResearchWorkshop, Application of Polymeric Reinforcementn Soil Retaining Structures, Departments of Civil Engineering, RMC and the University of Strathclyde.
  • Fang Y., Chen T., Holtz R. D., Lee W. F. (2004) Reduction of boundary friction in model tests, ASTM Geotechnical Testing Journal, 27 (1), 3–13. DOI: 10.1520/GTJ10812.
  • Jayasree P. K., Rajagopal K., Gnanendran C. T. (2012) Influence of sidewall friction on the results of small-scale laboratory model tests: Numerical Assessment, International Journal of Geomechanics, 12, 119–126. DOI: 10.1061/(ASCE)GM.1943-5622.0000120.
  • Jewell R. A. (1988) Analysis and Predicted Behaviour for the Royal Military College Trial Wall, [In:] Jarrett P. M., McGown A. (eds.) The Application of Polymeric Reinforcement in Soil Retaining Structures, NATO ASI Series (Series E: Applied Sciences), vol. 147, Springer, Dordrecht. DOI: 10.1007/978-94-009-1405-6_7.
  • Lambe T. W., Whitman R. V. (1979) Soil Mechanics, SI version, John Wiley and Sons, Inc.
  • Leśniewska D., Wood D. M. (2009) Observations of stresses and strains in a granular material, Journal of Engineering Mechanics, 135 (9), 1038–1054.
  • Niedostatkiewicz M., Leśniewska D., Tejchman J. (2011) Experimental analysis of shear zone patterns in cohesionless for earth pressure problems using particle image velocimetry, Strain, 47 (12), 218–231.
  • Sawicki A. (2000) Mechanics of Reinforced Soil, A.A. Balkema, Rotterdam/Brookfield, DOI: 10.1201/9781003211303.
  • Stanier S. A., Blaber J., Take W. A., White D. J. (2016) Improved image-based deformation measurement for geotechnical applications, Can. Geotech. J., 53, 727–739, DOI: 10.1139/cgj-2015-0253.
  • Tatsuoka F., Haibara O. (1985) Shear Resistance Between Sand and Smooth or Lubricated Surfaces, Soils and Foundations, 25 (1), 89–98, DOI: 10.3208/sandf1972.25.89.
  • Tatsuoka F. Molenkamp F., Torii T., Hino T. (1984) Behavior of lubrication layers of platens in element tests, Soils and Foundations, 24 (1), 113–128.
  • Tsubakihara Y., Kishida H., Nishiyama T. (1993) Friction between Cohesive Soils and Steel, Soils and Foundations, 33 (2), 145–156, DOI: 10.3208/sandf1972.33.2_145.
  • Tsubakihara Y., Kishida H. (1993) Frictional behaviour between normally consolidated clay and steel by two direct shear type apparatuses, Soils and Foundations, 33 (2), 1–13. DOI: 10.3208/sandf1972.33.2_1.
  • Vieira C. S., Lopes M. L., Caldeira L. M. (2013) Sand-geotextile interface characterization through monotonic and cyclic direct shear tests, Geosynthetics International, 20 (1), 26–38, DOI: 10.1680/gein.12.00037.
  • White D. J., Take W. A., Bolton M. D. (2003) Soil deformation measurement using particle image velocimetry (PIV) and photogrammetry, Geotechnique, 53 (7), 619–631, DOI: 10.1680/geot.2003.53.7.619.
  • Yoshimi Y., Kishida, T. (1981) A Ring Torsion Apparatus for Evaluating Friction Between Soil and Metal Surfaces, Geotechnical Testing Journal, GTJ10783J, 4 (4), 145–152, DOI: 10.1520/GTJ10783J.
  • Zheng J., Li L., Daviault M. (2021) Experimental Study on the Effectiveness of Lubricants in Reducing Sidewall Friction, International Journal of Geomechanics, 21 (5), 10 pp., DOI: 10.1061/(ASCE)GM.1943-5622.0002003.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-937eae33-6f53-4d1f-a692-8b1b5ed9ef39
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.