PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of mesh refinement on results of elastic-plastic FEM analysis

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
To improve fitting of numerical results to experimental data, in the past, distances between nodes were decreased for whole mesh. A typical mesh generator for Finite Element Method (FEM) analysis ensures possibility to decrease distances between nodes for edges or surfaces of described geometries. Influence of local mesh refinement for a flat and round tensile specimen on fitting of numerical tensile simulation results to experimental data was presented in the paper. Local mesh refinement was performed for areas with the error values higher than threshold value. First iteration of flat and round mesh refinement has to improved correlation of numerical and experimental data with acceptable increase of mesh file size. Similar observations have been made for the second iteration of the flat specimen mesh. On the basis of analysis, shown that second iteration of round mesh refinement caused crucial increase of mesh file size and computation time with negligible fitting improvement.
Rocznik
Tom
Strony
149--163
Opis fizyczny
Bibliogr. 23 poz., rys., tab., wykr.
Twórcy
autor
  • Chair of Material and Machinery Technology, University of Warmia and Mazury in Olsztyn
autor
  • Chair of Material and Machinery Technology, University of Warmia and Mazury in Olsztyn
Bibliografia
  • AINSWORTH M., ZHU J.Z., CRAIG A.W., ZIENKIEWICZ O.C. 1989. Analysis of the Zienkiewicz-Zhu a-posteriori error estimator in the finite element method. International Journal for Numerical Methods in Engineering, 28(9): 2161-2174.
  • ALEXA M. 2002. Refinement operators for triangle meshes. Computer Aided Geometric Design, 19, 169-172.
  • BABUSKA I., FLAHERTY J.E., HENSHAW W.D., HOPCROFT J.E., OLIGER J.E., TEZDUYAR T. 1995. Modeling, Mesh Generation, and Adaptive Numerical Methods for Partial Differential Equations. The IMA Volumes in Mathematics and its Applications, 75.
  • BABUSKA I., RHEINBOLDT W.C. 1978.A posteriori error estimates for the finite element method. International Journal for Numerical Methods for Engineering, 12: 1597-1615.
  • BÉCACHE E., JOLY P., RODRI´GUEZ J. 2005. Space-time mesh refinement for elastodynamics. Numerical results. Computer methods in applied mechanics and engineering, 194: 355-366.
  • BELL J., BERGER M., SALTZMAN J., WELCOME M. 2006. Three-Dimensional Adaptive Mesh Refinement for Hyperbolic Conservation Laws. SIAM Journal of Scientific Computing, 15(1): 127-138.
  • BERN M.W., FLAHERTY J.E., LUSKIN M. 1999. Grid Generation and Adaptive Algorithms. IMA Volumes in Mathematics and its Applications. Springer-Verlag New York Inc. New York.
  • CLARK K., FLAHERTY J.E., SHEPHARD M.S. 1994. Applied Numerical Mathematics. Special Issue. Adaptive Methods for Partial Differential Equations, 14. Code-Aster. www.code-aster.org (access: 1.02.2014).
  • DUARTEM M., DESCOMBES S., TENAUD C., CANDEL S., MASSOT M. 2013. Time-space adaptive numerical methods for the simulation of combustion fronts. Combustion and Flame, 160(6): 1083-1101.
  • DUMONT T., DUARTE M., DESCOMBES S., DRONNE M., MASSOT M., LOUVET V. 2013. Simulation of human ischemic stroke in realistic 3D geometry. Communications in Nonlinear Science and Numerical Simulation, 18(6): 1539-1557.
  • KŁYSZ S., SZABRACKI P., LISIECKI J. 2013. Numeryczna symulacja testu na odporność na pękanie dla stopu aluminium stosowanego w lotnictwie. Prace Naukowe ITWL, 32: 93-100.
  • KOSTOFF R.N., CUMMINGS R.M. 2013. Highly cited literature of high-speed compressible flow research. Aerospace Science and Technology, 26(1): 216-234.
  • KUHL L., BELL J.B., BECKNER V.E., BALAKRISHNAN K., ASPDEN A.J. 2013. Spherical combustion clouds in explosions. Shock Waves, 23(3): 233-249.
  • MIAZIO Ł., ZBOIŃSKI G. 2014. hp-Adaptive finite element analysis of thin-walled structures with use of the numerical tools for detection and range assessment of boundary layers. Recent Advances in Computational Mechanics. Taylor & Francais Group, London, pp. 57-62.
  • NICOLAS G., FOUQUET T. 2013. Adaptive mesh refinement for conformal hexahedralmeshes. Finite Elements in Analysis and Design, 67: 1-12.
  • PERDUTA A., PUTANOWICZ R. 2013. Mesh Adaptation Components in FEM Framework. 20th International Conference on Computer Methods in Mechanics, MS10, 13-14.
  • PN-EN ISO 6892-1. Metallic materials - Tensile testing. Part 1. Method of test at room temperature.
  • ROSSILLON F., MEZIERE Y. 2010. Analysis of fracture specimen failure of inconel 600: elastic-plastic calculations and thermo plastic energy fracture parameter. PVP 25323.
  • SZABRACKI P. 2012. Fracture behavior of nickel based alloy 600 of ductile tearing. Tech. rep., EDF SEPTEN internal report.
  • SZABRACKI P., BRAMOWICZ M., LIPIŃSKI T. 2012. Development and verication of work hardening models for X2CrNiMoN25-7-4 super duplex stainless steel after sigma phase precipitation hardening used for FEM simulations. Journal of Power Technologies, 92(3): 166-173.
  • SZABRACKI P., LIPIŃSKI T. 2013. Effect of Aging on the Microstructure and the Intergranular Corrosion Resistance of X2CrNiMoN25-7-4 Duplex Stainless Steel. Solid State Phenomena, 203-204: 59-62.
  • TAYLOR J.R. 1999. Wstęp do analizy błędu pomiarowego. PWN, Warszawa.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9374d15f-5241-4365-8ab7-5be002571b5c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.