PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

From Linear Classifier to Convolutional Neural Network for Hand Pose Recognition

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Recently gathered image datasets and new capabilities of high performance computing systems allowed developing new artificial neural network models and training algorithms. Using the new machine learning models, computer vision tasks can be accomplished based on the raw values of image pixels, instead of specific features. The principle of operation of deep artificial neural networks is more and more resembling of what we believe to be happening in the human visual cortex. In this paper we build up an understanding of convolutional neural networks through investigating supervised machine learning methods suchas K-Nearest Neighbors, linear classifiers and fully connected neural networks. We provide examples and accuracy results based on our implementation aimed for the problem of hand pose recognition.
Wydawca
Czasopismo
Rocznik
Strony
341--356
Opis fizyczny
Bibliogr. 21 poz., rys., wykr., tab.
Twórcy
  • Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, Gdańsk, Poland
Bibliografia
  • [1] Abadi M., Agarwal A., Barham P., Brevdo E., Chen Z., Citro C., Corrado G.S., Davis A., Dean J., Devin M., others: TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems. In: arXiv preprint arXiv:1603.04467, 2016. http://arxiv.org/abs/1603.04467.
  • [2] Bhuyan M.K., Neog D.R., Kar M.K.: Hand pose recognition using geometric features. In: Communications (NCC), 2011 National Conference on, pp. 1-5. IEEE, 2011. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5734786.
  • [3] Camgoz N.C., Had_eld S., Koller O., Bowden R.: Using convolutional 3d neural networks for user-independent continuous gesture recognition. In: Pattern Recognition (ICPR), 2016 23rd International Conference on, pp. 49-54. IEEE, 2016. http://ieeexplore.ieee.org/abstract/document/7899606/.
  • [4] Dardas N.H., Georganas N.D.: Real-Time Hand Gesture Detection and Recognition Using Bag-of-Features and Support Vector Machine Techniques, IEEE Transactions on Instrumentation and Measurement, vol. 60(11), pp. 3592{3607, 2011. http://dx.doi.org/10.1109/TIM.2011.2161140.
  • [5] Deng X., Yang S., Zhang Y., Tan P., Chang L., Wang H.: Hand3D: Hand Pose Estimation using 3D Neural Network. In: arXiv preprint arXiv:1704.02224, 2017. https://arxiv.org/abs/1704.02224.
  • [6] Erol A., Bebis G., Nicolescu M., Boyle R.D., Twombly X.: Vision-based hand pose estimation: A review, Computer Vision and Image Understanding, vol. 108(1{2), pp. 52-73, 2007. http://dx.doi.org/10.1016/j.cviu.2006.10.012.
  • [7] Hubel D.H., Wiesel T.N.: Receptive felds of single neurones in the cat's striate cortex, The Journal of Physiology, vol. 148(3), pp. 574-591, 1959. http://dx.doi.org/10.1113/jphysiol.1959.sp006308.
  • [8] Karpathy A., Toderici G., Shetty S., Leung T., Sukthankar R., Fei-Fei L.: Large-scale video classi_cation with convolutional neural networks. In: Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pp. 1725-1732. 2014. http://www.cv-foundation.org/openaccess/content_ cvpr_2014/html/Karpathy_Large-scale_Video_Classification_2014_CVPR_paper.html.
  • [9] Kim T.K., Wong S.F., Cipolla R.: Tensor canonical correlation analysis for action classification. In: Computer Vision and Pattern Recognition, 2007. CVPR'07. IEEE Conference on, pp. 1-8. IEEE, 2007. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4270162.
  • [10] Kingma D., Ba J.: Adam: A method for stochastic optimization. In: arXiv preprint arXiv:1412.6980, 2014. http://arxiv.org/abs/1412.6980.
  • [11] Molchanov P., Gupta S., Kim K., Kautz J.: Hand Gesture Recognition with 3D Convolutional Neural Networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 1-7. 2015. http://www.cv-foundation.org/openaccess/content_cvpr_workshops_2015/ W15/html/Molchanov_Hand_Gesture_Recognition_2015_CVPR_paper.html.
  • [12] Neverova N., Wolf C., Taylor G.W., Nebout F.: Multi-scale deep learning for gesture detection and localization. In: Workshop at the European Conference on Computer Vision, pp. 474-490. Springer, 2014. http://link.springer.com/chapter/10.1007/978-3-319-16178-5_33.
  • [13] Powers D.M.: Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation, Journal of Machine Learning Technologies, vol. 2(1), pp. 37-63, 2011. https://bioinfopublication.org/viewhtml.php?artid=BIA0001114.
  • [14] Prasad V.S.N., Domke J.: Gabor filter visualization, Technical report, University of Maryland, 2005.
  • [15] Rumelhart D.E., Hinton G.E., Williams R.J.: Learning representations by back- propagating errors, Nature, vol. 323(6088), pp. 533{536, 1986. http://dx.doi.org/10.1038/323533a0.
  • [16] Russakovsky O., Deng J., Su H., Krause J., Satheesh S., Ma S., Huang Z., Karpathy A., Khosla A., Bernstein M., Berg A.C., Fei-Fei L.: ImageNet Large Scale Visual Recognition Challenge, International Journal of Computer Vision, vol. 115(3), pp. 211-252, 2015. http://dx.doi.org/10.1007/s11263-015-0816-y.
  • [17] Sankowski D., Nowakowski J. (eds.): Computer vision in robotics and industrial applications. No. 3 in Series in computer vision.World Scientific, Singapore, 2014.
  • [18] Srivastava N., Hinton G., Krizhevsky A., Sutskever I., Salakhutdinov R.: Drop out: A simple way to prevent neural networks from overffitting, The Journal of Machine Learning Research, vol. 15(1), pp. 1929-1958, 2014. http://dl.acm.org/citation.cfm?id=2670313.
  • [19] Sturman D., Zeltzer D.: A survey of glove-based input, IEEE Computer Graphics and Applications, vol. 14(1), pp. 30{39, 1994. http://dx.doi.org/10.1109/38.250916.
  • [20] Suarez J., Murphy R.R.: Hand gesture recognition with depth images: A review. In: 2012 IEEE RO-MAN: The 21st IEEE International Symposium on Robot and Human Interactive Communication, pp. 411-417. 2012. http://dx.doi.org/10.1109/ROMAN.2012.6343787.
  • [21] Szegedy C., Vanhoucke V., Io_e S., Shlens J., Wojna Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818-2826. 2016. http://www.cv-foundation.org/openaccess/content_cvpr_2016/html/ Szegedy_Rethinking_the_Inception_CVPR_2016_paper.html.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-93700b39-8e0c-4783-9d0c-f36c843fffe4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.