PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Preparation of Conductive Polyethylene Terephthalate Yarns by Deposition of Silver & Copper Nanoparticles

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Otrzymywanie poliestrowych przędz przewodzących poprzez nanoszenie nanocząstek srebra i miedzi
Języki publikacji
EN
Abstrakty
EN
The assemblage of textiles and electronics in a single structure has led to the development of smart textiles for functional purposes and special products. Conductive yarn as a necessary component of smart textiles is being developed by a number of techniques. The objective of the current study was to impart conductivity to yarn by coating the silver and copper nanoparticles on the surface of multifilament polyester textile fibres. The surface morphology and electrical conductivity of the coated yarns were investigated. The wash ability of the conductive yarns developed was also studied. The yarns showed good retention of the nanoparticles, as proven by the very small loss of the conductivity of the material.
PL
Połączenie tekstyliów i elektroniki w jednej strukturze doprowadziło do rozwoju inteligentnych tekstyliów znajdujących zastosowanie w celach funkcjonalnych i produktach specjalnych. Przędza przewodząca, jako niezbędny składnik inteligentnych wyrobów włókienniczych, może być otrzymywana za pomocą szeregu różnych technik. Celem badania było nadanie przewodnictwa przędzy poliestrowej poprzez powlekanie jej nanocząsteczkami srebra i miedzi. Zbadano morfologię powierzchni i przewodnictwo elektryczne powleczonych przędz, a także ich odporność na pranie. Przędze wykazywały dobrą retencję nanocząstek, co potwierdzała bardzo mała utrata przewodności materiału.
Rocznik
Strony
25--29
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
autor
  • Faculty of Engineering & Technology, National Textile University, Faisalabad 37610, Pakistan
autor
  • Faculty of Engineering & Technology, National Textile University, Faisalabad 37610, Pakistan
autor
  • Faculty of Engineering & Technology, National Textile University, Faisalabad 37610, Pakistan
autor
  • Faculty of Engineering & Technology, National Textile University, Faisalabad 37610, Pakistan
autor
  • Faculty of Engineering & Technology, National Textile University, Faisalabad 37610, Pakistan
autor
  • Faculty of Engineering & Technology, National Textile University, Faisalabad 37610, Pakistan
autor
  • Faculty of Engineering & Technology, National Textile University, Faisalabad 37610, Pakistan
autor
  • Faculty of Engineering & Technology, National Textile University, Faisalabad 37610, Pakistan
Bibliografia
  • 1. Stoppa M, Chiolerio A. Wearable electronics and smart textiles: a critical review. Sensors 2014; 14(7): 11957-11992.
  • 2. Coosemans J, Hermans B, Puers R. Integrating wireless ECG monitoring in textiles. Sensors and Actuators A: Physical 2006; 130: 48-53.
  • 3. Xue P, et al. Electrically conductive yarns based on PVA/carbon nanotubes. Composite Structures 2007; 78(2): 271-277.
  • 4. Xue P, Tao X.M. Morphological and electromechanical studies of fibers coated with electrically conductive polymer. Journal of Applied Polymer Science 2005; 98(4): 1844-1854.
  • 5. Post ER, Orth M. Smart fabric, or ‘wearable clothing’. in Digest of Papers, First International Symposium on Wearbale Computers. 1997. Cambridge, USA: IEEE.
  • 6. Baxter LK. Capacitive sensors: Design and Applications. 1996, New York: Wiley-IEEE Press.
  • 7. Abdulghani A, Casson A, Rodriguez-Villegas E. Quantifying the Feasibility of Compressive Sensing in Portable Electroencephalography Systems, in Foundations of Augmented Cognition. Neuroergonomics and Operational Neuroscience. Schmorrow D, Estabrooke I, Grootjen M. Editors 2009, Springer Berlin Heidelberg. 319-328.
  • 8. Eves SMD, et al. Wearbale electronics. Philips Research Intellegent Fiber Gr. 2001; 10: 4-9.
  • 9. Monika S, Muthukumar P. Wearable Technology of Soft Switch Application and Colour Changing Materials in Textile Industry. SSRG International Journal of Polymer and Textile Engineering 2014; 1(1): 20-23.
  • 10. Havich M. This shirt could save your life, in Textile World. 1999; Textile World: Georgia, USA.
  • 11. Roberts S. Intelligent garments facts or fictions, in Just style. 2000; Aroq Ltd.: United Kingdom.
  • 12. Lennox-Kerr, Current state of electrically conductive materials. High performance textiles, 1990. 11: 6-7.
  • 13. Ko F, et al. Electrospinning of continuous carbon nanotube filled nanofiber yarns. Advanced Materials 2003; 15(14): 1161-1165.
  • 14. Liu X, et al. Polyelectrolyte-bridged metal/cotton hierarchical structures for highly durable conductive yarns. ACS applied materials & interfaces 2010; 2(2): 529-535.
  • 15. Vaia R, et al. Hierarchical control of nanoparticle deposition: high-performance electrically conductive nanocomposite fibers via infiltration. Chemistry of Materials 1998; 10(8): 2030-2032.
  • 16. Coessens V, Pintauer T, Matyjaszewski K. Functional polymers by atom transfer radical polymerization. Progress in Polymer Science 2001; 26(3): 337-377.
  • 17. Dhandayuthapani B, et al. Polymeric scaffolds in tissue engineering application: a review. International Journal of Polymer Science, 2011.
  • 18. Okuzaki H, Harashina Y, Yan H. Highly conductive PEDOT/PSS microfibers fabricated by wet-spinning and dip-treatment in ethylene glycol. European Polymer Journal 2009; 45(1): 256-261.
  • 19. Muthukumar N. Govindarajan GT. Surface Resistivity and EMI Shielding Effectiveness of Polyaniline Coated Polyester Fabric. Journal of Textile and Apparel, Technology and Management 2012; 7(4): 1-6.
  • 20. Lock JP, Im SG, Gleason KK. Oxidative chemical vapor deposition of electrically conducting poly (3, 4-ethylenedioxythiophene) films. Macromolecules 2006; 39(16): 5326-5329.
  • 21. Knittel D, Schollmeyer E. Electrically high-conductive textiles. Synthetic Metals 2009; 159(14): 1433-1437.
  • 22. Yang X, et al. Vapor phase polymerization of 3, 4-ethylenedioxythiophene on flexible substrate and its application on heat generation. Polymers for Advanced Technologies 2011; 22(6): 1049-1055.
  • 23. Jang J, Chang M, Yoon H. Chemical Sensors Based on Highly Conductive Poly (3, 4-ethylenedioxythiophene) Nanorods. Advanced Materials 2005; 17(13): 1616-1620.
  • 24. Shim BS, et al. Smart electronic yarns and wearable fabrics for human biomonitoring made by carbon nanotube coating with polyelectrolytes. Nano letters 2008; 8(12): 4151-4157.
  • 25. Glass R, et al. Block copolymer micelle nanolithography on non-conductive substrates. New Journal of Physics 2004; 6(1): 101.
  • 26. Radetić M. Functionalization of textile materials with silver nanoparticles. Journal of Materials Science 2013; 48(1): 95-107.
  • 27. Zhang L, et al. A review: carbon nanofibers from electrospun polyacrylonitrile and their applications. Journal of Materials Science 2014; 49(2): 463-480.
  • 28. Alivisatos P, et al. From molecules to materials: Current trends and future directions. Advanced Materials 1998; 10(16): 1297-1336.
  • 29. Xue C-H, et al. Superhydrophobic conductive textiles with antibacterial property by coating fibers with silver nanoparticles. Applied Surface Science 2012; 258(7): 2468-2472.
  • 30. Chou YH, et al. Recovery of Cu(II) by chemical reduction using sodium dithionite. Chemosphere 2015; 141: 183-8.
  • 31. Dhawan A, et al. Woven Fabric-Based Electrical Circuits: Part II: Yarn and Fabric Structures to Reduce Crosstalk Noise in Woven Fabric-Based Circuits. Textile Research Journal 2004; 74(11): 955-960.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-936d6488-30c0-4e33-9c43-1fc8c9e85c76
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.