PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Effect of welding environment on fatigue crack growth rate of aluminium alloy 1100

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: Aluminium is a light metal that is widely used in industry because it has good machinability, good corrosion resistance has good machinability, good corrosion resistance, and high ductility. In its application to the vehicle structure, the welding process requires a connection process. However, aluminium welding has several problems because aluminium has high thermal conductivity, a large coefficient of expansion, specific gravity and a low melting point. So, this study aims to determine the difference in fatigue crack growth rate of welded joints from different welding environmental conditions such as air humidity and air temperature. Design/methodology/approach: Fatigue crack growth rate on Al 1100, which is welded using Metal Inert Gas (MIG) welding in an isolated welding room and controlled relative humidity and temperature parameters during the welding process. Findings: A fatigue crack growth rate increases as the welding chamber's humidity and air temperature parameters decrease. A large amount of porosity, transgranular fatigue crack growth behaviour, and quasi-cleavage fault morphology occurred at high welding chamber temperature and humidity due to the influence of hydrogen and oxygen in the welding process. Research limitations/implications: It is recommended to continue to study the characteristics of the fatigue crack growth rate characteristics of other materials or dissimilar metal joints in a controlled welding room with various other parameters. Practical implications: As information and material for consideration for similar research, design a good aluminium welding chamber to minimise defects in welded joints. Originality/value: The originality of the article shows the results of experimental data on the study of FCGR characteristics and fracture characteristics of Al-1100 welding joints in a controlled welding room.
Rocznik
Strony
49--60
Opis fizyczny
Bibliogr. 47 poz., rys., tab., wykr.
Twórcy
  • Department of Mechanical Engineering, Universitas Sebelas Maret, Surakarta 57126, Indonesia
  • Department of Mechanical Engineering, Universitas Sebelas Maret, Surakarta 57126, Indonesia
autor
  • Centre of Technology for System and Infrastructure of Transportation, National Research and Innovation Agency (BRIN), Jakarta 10340, Indonesia
autor
  • Department of Mechanical Engineering, Universitas Sebelas Maret, Surakarta 57126, Indonesia
  • Department of Mechanical Engineering, Universitas Lampung, Lampung 35141, Indonesia
autor
  • Department of Mechanical and Industrial Engineering, Faculty of Engineering, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
autor
  • Department of Mechanical Engineering, Universitas Sebelas Maret, Surakarta 57126, Indonesia
Bibliografia
  • [1] A. Ambroziak, M. T. Solarczyk, Application andmechanical properties of aluminium alloys, in: W. Pietraszkiewicz, W. Witkowski (eds), Shell Structures: Theory and Applications, vol. 4, CRC Press, London, 2017, 525-528. DOI: https://doi.org/10.1201/9781315166605-121
  • [2] A. Buchanan, M. Charara, J.L. Sullivan, G.M. Lewis, G.A. Keoleian, Lightweighting shipping containers: Life cycle impacts on multimodal freight transportation, Transportation Research Part D: Transport and Environment 62 (2018) 418-432. DOI: https://doi.org/10.1016/j.trd.2018.03.011
  • [3] S. Yan, H. Chen, C. Ma, Y. Nie, X. Wang, Q.H. Qin, Local corrosion behaviour of hybrid laser-MIG welded Al-Zn-Mg alloy joints, Materials and Design 88 (2015) 1353-1365. DOI: https://doi.org/10.1016/j.matdes.2015.08.140
  • [4] B. Han, Y. Chen, W. Tao, L.Q. Li, Nano-indentation investigation on the local softening of equiaxed zone in 2060-T8/2099-T83 aluminum-lithium alloys T-joints welded by double-sided laser beam welding, Journal of Alloys and Compounds 756 (2018) 145-162. DOI: https://doi.org/10.1016/j.jallcom.2018.05.014
  • [5] H.L. Li, D. Liu, Y.T. Yan, N. Guo, J.C. Feng, Microstructural characteristics and mechanical properties of underwater wet flux-cored wire welded 316L stainless steel joints, Journal of Materials Processing Technology 238 (2016) 423-430. DOI: https://doi.org/10.1016/j.jmatprotec.2016.08.001
  • [6] Y. Huang, D. Zhao, H. Chen, L. Yang, and S. Chen, Porosity detection in pulsed GTA welding of 5A06 Al alloy through spectral analysis, Journal of Materials Processing Technology 259 (2018) 332-340. DOI: https://doi.org/10.1016/j.jmatprotec.2018.05.006
  • [7] C. Sharma, D.K. Dwivedi, P. Kumar, Fatigue behavior of friction stir weld joints of Al-Zn-Mg alloy AA7039 developed using base metal in different temper condition, Materials and Design 64 (2014) 334- 344. DOI: https://doi.org/10.1016/j.matdes.2014.07.013
  • [8] C.G. Pickin, K. Young, Evaluation of cold metal transfer (CMT) process for welding aluminium alloy, Science and Technology of Welding and Joining 11/5 (2006) 583-585. DOI: https://doi.org/10.1179/174329306X120886
  • [9] H. Li, J. Zou, J. Yao, and H. Peng, The effect of TIG welding techniques on microstructure, properties and porosity of the welded joint of 2219 aluminum alloy, Journal of Alloys and Compounds 727 (2017) 531-539. DOI: https://doi.org/10.1016/j.jallcom.2017.08.157
  • [10] K.D. Carlson, Z. Lin, C. Beckermann, Modeling the effect of finite-rate hydrogen diffusion on porosity formation in aluminum alloys, Metallurgical and Materials Transactions B 38/4 (2007) 541-555. DOI: https://doi.org/10.1007/s11663-006-9013-2
  • [11] P. Kah, J. Martikainen, Influence of shielding gases in the welding of metals, The International Journal of Advanced Manufacturing Technology 64/9-12 (2013) 1411-1421. DOI: https://doi.org/10.1007/s00170-012- 4111-6
  • [12] F.V. Antunes, S. Serrano, R. Branco, P. Prates, Fatigue crack growth in the 2050-T8 aluminium alloy, International Journal of Fatigue 115 (2018) 79-88. DOI: https://doi.org/10.1016/j.ijfatigue.2018.03.020
  • [13] Z. Shan, S. Liu, L. Ye, X. Liu, Y. Dong, Y. Li, J. Tang, Y. Deng, X. Zhang, Effect of three-stage homo- genization on recrystallization and fatigue crack growth of 7020 aluminum alloy, Journal of Materials Research and Technology 9/6 (2020) 13216-13229. DOI: https://doi.org/10.1016/j.jmrt.2020.09.066
  • [14] C. Campbell (ed), Elements of Metallurgy and Engineering Alloys, ASM International, Materials Park, OH, 2008. DOI: https://doi.org/10.31399/asm.tb.emea.9781627082518
  • [15] C. Kanchanomai, Y. Mutoh, Fatigue crack initiation and growth in solder alloys, Fatigue and Fracture of Engineering Materials and Structures 30/5 (2007) 443- 457. DOI: https://doi.org/10.1111/j.1460-2695.2006.01088.x
  • [16] K.S. Chan, Roles of microstructure in fatigue crack initiation, International Journal of Fatigue 32/9 (2010) 1428-1447. DOI: https://doi.org/10.1016/j.ijfatigue.2009.10.005
  • [17] M.N. Desmukh, R.K. Pandey, A.K. Mukhopadhyay, Effect of aging treatments on the kinetics of fatigue crack growth in 7010 aluminum alloy, Materials Science and Engineering: A 435-436 (2006) 318-326. DOI: https://doi.org/10.1016/j.msea.2006.07.063
  • [18] L.M. Tudose, C.O. Popa, Stress intensity factors analysis cracks in the hertzian stresses field of teeth gears, Proceedings of the 10th International Conference on Tribology “ROTRIB’07”, Bucharest, Romania, 2007, 1-8.
  • [19] G. Gou, M. Zhang, H. Chen, J. Chen, P. Li, Y.P. Yang, Effect of humidity on porosity, microstructure, and fatigue strength of A7N01S-T5 aluminum alloy welded joints in high-speed trains, Materials and Design 85 (2015) 309-317. DOI: https://doi.org/10.1016/j.matdes.2015.06.177
  • [20] V.I. Vishnyakov, S.A. Kiro, M.V. Oprya, A.A. Ennan, Effect of shielding gas temperature on the welding fume particle formation: Theoretical model, Journal of Aerosol Science 124 (2018) 112-121. DOI: https://doi.org/10.1016/j.jaerosci.2018.07.006
  • [21] C. Zhu, L. Sun, W. Gao, G. Li, J. Cui, The effect of temperature on microstructure and mechanical properties of Al/Mg lap joints manufactured by magnetic pulse welding, Journal of Materials Research and Technology 8/3 (2019) 3270-3280. DOI: https://doi.org/10.1016/j.jmrt.2019.05.017
  • [22] C.F. Korenberg, A.J. Kinloch, J.F. Watts, Crack growth of structural adhesive joints in humid environments, The Journal of Adhesion 80/3 (2004) 169-201. DOI: https://doi.org/10.1080/00218460490279233
  • [23] A. Munitz, C. Cotler, A. Stern, G. Kohn, Mechanical properties and microstructure of gas tungsten arc welded magnesium AZ91D plates, Materials Science and Engineering: A 302/1 (2001) 68-73. DOI: https://doi.org/10.1016/S0921-5093(00)01356-3
  • [24] M. Harooni, B. Carlson, B.R. Strohmeier, R. Kovacevic, Pore formation mechanism and its mitigation in laser welding of AZ31B magnesium alloy in lap joint configuration, Materials and Design 58 (2014) 265-276. DOI: https://doi.org/10.1016/j.matdes.2014.01.050
  • [25] M. Wahba, M. Mizutani, Y. Kawahito, S. Katayama, Laser welding of die-cast AZ91D magnesium alloy, Materials and Design 33 (2012) 569-576. DOI: https://doi.org/10.1016/j.matdes.2011.05.016
  • [26] C.B. Fuller, M.W. Mahoney, The effect of friction stir processing on 5083-H321/5356 Al arc welds: microstructural and mechanical analysis, Metallurgical and Materials Transactions A 37/12 (2006) 3605-3615. DOI: https://doi.org/10.1007/s11661-006-1055-1
  • [27] S.E. Benzley, Book Reviews : Elementary Engineering Fracture Mechanics, The Shock and Vibration Digest 8/2 (1976) 100.
  • [28] S.R. Bintoro, A.R. Prabowo, Triyono, N. Muhayat, Influence of element discretization types to fatigue behaviors in finite element analysis, Materials Today Proceedings 57/2 (2022) 531-538. DOI: https://doi.org/10.1016/j.matpr.2022.01.416
  • [29] K. Minakawa, Y. Matsuo, A.J. McEvily, The influence of a duplex microstructure in steels on fatigue crack growth in the near-threshold region, Metallurgical Transactions A 13 (1982) 439-445. DOI: https://doi.org/10.1007/BF02643352
  • [30] M. Zubairuddin, S.K. Albert, M. Vasudevan, S. Mahadevan, V. Chaudhari, V.K. Suri, Numerical simulation of multi-pass GTA welding of grade 91 steel, Journal of Manufacturing Processes 27 (2017) 87-97. DOI: https://doi.org/10.1016/j.jmapro.2017.04.031
  • [31] Q. Wang, X.S. Liu, P. Wang, X. Xiong, H.Y. Fang, Numerical simulation of residual stress in 10Ni5CrMoV steel weldments, Journal of Materials Processing Technology 240 (2017) 77-86. DOI: https://doi.org/10.1016/j.jmatprotec.2016.09.011
  • [32] W. Zheng, Y. He, J. Yang, Z. Gao, Hydrogen diffusion mechanism of the single-pass welded joint in welding considering the phase transformation effects, Journal of Manufacturing Processes 36 (2018) 126-137. DOI: https://doi.org/10.1016/j.jmapro.2018.09.026
  • [33] H. Toda, T. Hidaka, M. Kobayashi, K. Uesugi, A. Takeuchi, K. Horikawa, Growth behavior of hydrogen micropores in aluminum alloys during high- temperature exposure, Acta Materialia 57/7 (2009) 2277-2290. DOI: https://doi.org/10.1016/j.actamat.2009.01.026
  • [34] N.I. Golikov, E.M. Maksimova, Y.N. Saraev, Investigation of the structure of welded joints performed at negative ambient air temperatures, Procedia Structural Integrity 30 (2020) 93-99. DOI: https://doi.org/10.1016/j.prostr.2020.12.016
  • [35] E. Mercan, Y. Ayan, N. Kahraman, Investigation on joint properties of AA5754 and AA6013 dissimilar aluminum alloys welded using automatic GMAW, Engineering Science and Technology, an International Journal 23/4 (2020) 723-731. DOI: https://doi.org/10.1016/j.jestch.2019.11.004
  • [36] R. Simanjuntak, N. Muhayat, A.R. Prabowo, Y.C.N. Saputro, Triyono, Effect of environment on the defects of welded aluminum AA 1100, AIP Conference Proceedings 2217 (2020) 030135. DOI: https://doi.org/10.1063/5.0000811
  • [37] T. Beier, B. Schork, J. Bernhard, D. Tchoffo Ngoula, T. Melz, M. Oechsner, M. Vormwald, Simulation of fatigue crack growth in welded joints, Materialwissenschaft und Werkstofftechnik ‒ Materials Science and Engineering Technology 46/2 (2015) 110-122. DOI: https://doi.org/10.1002/mawe.201400366
  • [38] V. Randle, M. Coleman, Grain growth control in grain boundary engineered microstructures, Materials Science Forum 715-716 (2012) 103-108. DOI: https://doi.org/10.4028/www.scientific.net/MSF.715- 716.103
  • [39] S. Tian, W. Chen, S. Chen, Y. Gu, X. Gong, X. Zhan, The effect of cryogenic applications on tensile strength of aluminum 2219-T87 T-joint welded by dual laser- beam bilateral synchronous welding, Journal of Manufacturing Processes 56/A (2020) 777-785. DOI: https://doi.org/10.1016/j.jmapro.2020.05.020
  • [40] Y. Fang, S. Yang, Y. Huang, X. Meng, Study of Microstructure and Fatigue in Aluminum/Steel Butt Joints Made by CMT Fusion-Brazing Technology, Materials 15/7 (2022) 2367. DOI: https://doi.org/10.3390/ma15072367
  • [41] A. Alvaro, D. Wan, V. Olden, A. Barnoush, Hydrogen enhanced fatigue crack growth rates in a ferritic Fe-3 wt%Si alloy and a X70 pipeline steel, Engineering Fracture Mechanics 219 (2019) 106641. DOI: https://doi.org/10.1016/j.engfracmech.2019.106641
  • [42] G. Lu, E. Kaxiras, Hydrogen Embrittlement of Aluminum : The Crucial Role of Vacancies, Physical Review Letters 94/15 (2005) 155501. DOI: https://doi.org/10.1103/PhysRevLett.94.155501
  • [43] E.D. Merson, P.N. Myagkikh, V.A. Poluyanov, D.L. Merson, A. Vinogradov, Quasi-cleavage hydrogen-assisted cracking path investigation by fractographic and side surface observations, Engineering Fracture Mechanics 214 (2019) 177-193. DOI: https://doi.org/10.1016/j.engfracmech.2019.04.042
  • [44] L.H.S. Barbosa, P.J. Modenesi, L.B. Godefroid, A.R. Arias, Fatigue crack growth rates on the weld metal of high heat input submerged arc welding, International Journal of Fatigue 119 (2019) 43-51. DOI: https://doi.org/10.1016/j.ijfatigue.2018.09.020
  • [45] W. Gao, D. Wang, F. Cheng, C. Deng, Y. Liu, W. Xu, Enhancement of the fatigue strength of underwater wet welds by grinding and ultrasonic impact treatment, Journal of Materials Processing Technology 223 (2015) 305-312. DOI: https://doi.org/10.1016/j.jmatprotec.2015.04.013
  • [46] A. Shyam, E. Lara-Curzio, A model for the formation of fatigue striations and its relationship with small fatigue crack growth in an aluminum alloy, International Journal of Fatigue 32/11 (2010) 1843- 1852. DOI: https://doi.org/10.1016/j.ijfatigue.2010.05.005
  • [47] Y. Murakami, N. Shiraishi, K. Furukawa, Estimation of Service Loading From the Width and Height of Fatigue Striations of 2017‐T4 a1 Alloy, Fatigue and Fracture of Engineering Materials and Structures 14/9 (1991) 897- 906. DOI: https://doi.org/10.1111/j.1460-2695.1991.tb00723.x
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-936d1c22-1dde-4d0e-b498-43aa567763c9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.