Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Critical analysis of underground coal gasification models. Part II: Kinetic and computational fluid dynamics models. Literary studies and comparison of models

Treść / Zawartość
Warianty tytułu
Języki publikacji
Purpose Underground coal gasification, as a complex and technically difficult process, in many aspects requires the support provided by computer simulations. There are a lot of mathematical models of UCG, some of them are concentrated with the forecast of syngas composition. The most important may be divided into three groups: equilibrium, kinetic and CFD models. The purpose of this work was the detailed critical analysis of more advanced approaches (than equilibrium considerations) applied in simulations of the coal conversion process – both kinetic and based on computational fluid dynamics. The other aim of this paper was the comparative analysis of the most important models of underground coal gasification. Methods Literary studies, concerned with the features and mathematical description of kinetic and CFD models of coal gasification, were used as the research method applied in the work presented. Compilation of the kinetic parameters of gasification reactions was an important part of this article. For that purpose the analysis of Polish and foreign papers, monographs and university handbooks was undertaken. Results Critical analysis of kinetic and CFD models of coal gasification (together with their mathematical formulation) was the result of considerations presented in this article. Kinetic equations were shown separately for pyrolysis, homogenous and heterogeneous reactions. In the case of CDF models, except for the presentation of the conservation equation, the most important methods of modeling turbulence are described (for the reason that this phenomenon may have significant inflence on the final results). Practical implications The work presented describes practical issues connected with kinetic and CFD models, focusing on their capabilities, drawbacks and possible application problems. Originality/ value This paper presents state of art in the field of coal gasification modeling using kinetic and computational fluid dynamics approach. The paper also presents own comparative analysis (concerned with mathematical formulation, input data and parameters, basic assumptions, obtained results etc.) of the most important models of underground coal gasification.
Opis fizyczny
Bibliogr. 23 poz.
  • Interdisciplinary PhD Studies in the Field of Clean Coal Technologies, Central Mining Institute (Katowice, Poland)
  • Ahmed, T., Ahmad, M., Yusup, S., Inayat, A., & Khan, Z. (2012). Mathematical and computational approaches for design of gasification for hydrogen production: A review. Renewa ble and Sustainable Energy Reviews, 16(4), 2304–2315. doi: 10.1016/j.rser.2012.01.035.
  • Ansys Fluent 12.0 Theory Guide. (2009). ANSYS, Inc.
  • Atkins, P. (2001). Chemia fizyczna [Physical chemistry]. Warszawa: PWN.
  • Bhutto, A., Bazmi, A., & Zahedi, G. (2013). Underground coal gasification: From fundamentals to applications. Progress in Energy and Combustion Science, 39(1), 189–214. doi: 10.1016/j.pecs. 2012.09.004.
  • Białecka, B. (2008). Podziemne zgazowanie węgla – podstawy procesu decyzyjnego [Underground coal gasification – basics of the decision-making process]. Katowice: Główny Instytut Górnictwa.
  • Boiko, E.A., & Pachkovskii, S.V.A. (2004). Kinetic Model of Thermochemical Transformation of Solid Organic Fuels. Russian Journal of Applied Chemistry, 77(9), 1547–1555. doi: 10.1007/s11167-005-0070-0.
  • Chaiyot, T., Supunnee, J., & Juejun, K. (2013). Comparison of Kinetic Models for CO2 Gasification of Coconut-Shell Chars: Carbonization Temperature Effects on Char Reactivity and Porous Properties of Produced Activated Carbons. Engineering Journal, 17(1), 13–27. doi: 10.4186/ej.2013.17.1.
  • Chen, C.J., Hung, C.I., & Chen, W.H. (2012). Numerical investigation on performance of coal gasification under various injection patterns in an entrained flow gasifier. Applied Energy, 100, 218–228. doi: 10.1016/j.apenergy.2012.05.013.
  • de Souza-Santos, M.L. (2004). Solid Fuels Combustion and Gasification: Modeling, Simuation and Equipment Operation. New York: Marcel Dekker Inc.
  • Golec, T., Ilmurzyńska, J. (2008). Modelowanie procesów zgazowania [Modeling of gasification process]. In T. Borowiecki, J. Kijeński, J. Machnikowski, & M. Ściążko (Eds.), Czysta energia, produkty chemiczne i paliwa z węgla – ocena potencjału rozwojowego (pp. 170–187). Zabrze: Wydawnictwo Instytutu Chemicznej Przeróbki Węgla.
  • Gómez-Barea, A., & Leckner, B. (2010). Modeling of biomass gasification in fluidized bed. Progress in Energy and Combustion Science, 36(4), 444–509. doi: 10.1016/j.pecs.2009.12.002.
  • Jaworski, Z. (2005). Numeryczna mechanika płynów w inżynierii chemicznej i procesowej [Computational fluid dynamics in chemical and process engineering]. Warszawa: Akademicka Oficyna Wydawnicza EXIT.
  • Li, Z.Q., Wei, F., & Jin, Y. (2003). Numerical simulation of pulve-rized coal combustion and NO formation. Chemical Engineering Science, 58(23-24), 5161–5171. doi: 10.1016/j.ces.2003.08.012.
  • Łabojko, G., Morańska-Kotyczka, M., Plis, A., & Ściążko, M. (2012). Kinetic study of Polish hard coal and its char gasification using carbon dioxide. Thermochimica Acta, 549(10), 158–165. doi: 10.1016/j.tca.2012.09.029.
  • Pèrez-Fortes, M., & Bojarski, A. (2011). Modelling Syngas Generation. In L. Puigjaner (Ed.), Syngas from Waste: Emerging Technologies [pp. 55–88]. London: Springer-Verlag London Limited.
  • Puig-Arnavat, M., Bruno J.C., & Coronas, A. (2010): Review and analysis of biomass gasification models. Renewable and Sustainable Energy Reviews, 14(9), 2841–2851. doi: 10.1016/j.rser.2010.07.030.
  • Silaen, A., & Wang, T. (2009). Comparison of instantaneous, equilibrium, and finite-rate gasification models in an entrained-flow coal gasifier. In Proceedings of the 26th International Pittsburgh Coal Conference (pp. 1–11). Pittsburgh, PA: University of Pittsburgh.
  • Silaen, A., & Wang, T. (2010). Effect of turbulence and devolatization models on coal gasification simulation in entrained-flow gasifier. International Journal of Heat and Mass Transfer, 53(9-10), 2074-2091. doi: 10.1016/j.ijheatmasstransfer.2009.12.047.
  • Tabiś, B. (2002). Zasady inżynierii reaktorów chemicznych [Principles of chemical reactors engineering]. Warszawa: WNT.
  • Tomeczek, J. (1992). Spalanie węgla [Coal combustion]. Gliwice: Wydaw. Politechniki Śląskiej.
  • Wachowicz, J., Janoszek, T., & Iwaszenko, S. (2010). Model tests of the coal gasification process. Archives of Mining Sciences, 55(2), 245–258.
  • Watanabe, H., & Otaka, M. (2006). Numerical simulation of coal gasification in entrained flow coal gasifier. Fuel, 85(12-13), 935–943. doi: 10.1016/j.fuel.2006.02.002.
  • Williams, A., Pourkashanian, M., & Jones, J.M. (2001). Combustion of pulverized coal and biomass. Progress in Energy and Combustion Science, 27(6), 587–610. doi: 10.1016/S0360-1285(01)00004-1.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.