Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This study was motivated by the need to provide more insight into the possible mechanism of the intermolecular interactions between antispasmodic drug drotaverine and one of the serum albumins (BSA), with the aim to indicate the most probable sites of these interactions. For this purpose both experimental (spectrofluorometric titration at various temperatures) and theoretical (molecular mechanics) methods have been applied. The obtained results clearly showed that drotaverine quenched BSA fluorescence, and the most probable mechanism is static quenching. The negative value of the theoretically predicted binding free Gibbs energy (-23.8 kJ/mol) confirmed the existence of the intermolecular interactions involving drotaverine and one tryptophan within BSA protein and was well agreed with the experimentally determined value of -25.2 kJ/mol.
Czasopismo
Rocznik
Tom
Strony
25--36
Opis fizyczny
Bibliogr. 26 poz.
Twórcy
autor
- Institute of General Food Chemistry, Lodz University of Technology, 90-924 Lodz, Poland
autor
- Norwegian University of Science and Technology, 7491 Trondheim, Norway
autor
- Queen’s University Belfast, BT7 1NN, Northern Ireland
autor
- Universidade Federal de São Paulo, 04021-001, São Paulo, Brazil
autor
- Josip Juraj Strossmayer University of Osijek, 31000, Osijek, Croatia
autor
- ETSEA-University of Lleida, 25198 Lleida, Spain
autor
- Technical University of Denmark, 2800 KongensLyngby, Denmark
autor
- Institute of General Food Chemistry, Lodz University of Technology, 90-924 Lodz, Poland
Bibliografia
- 1. Ghuman J, Zunszain PA, Petitpas I, Bhattacharya AA, Otagiri M, Curry S. Structural basis of the drug-binding specificity of human serum albumin. J Mol Biol 2005, 353:38-52.
- 2. Schreiber G, Urban J. The synthesis and secretion of albumin. Rev Physiol Biochem Pharmacol 1978, 82:27-95.
- 3. Sekula B, Zielinski K, Bujacz A. Crystallographic studies of the complexes of bovine and equine serum albumin with 3,5-diiodosalicylic acid. Int J Biol Macromol 2013, 60:316-324.
- 4. Doolittle RF. Reconstructing history with amino acid sequences. Protein Sci 1992, 1:191-200.
- 5. Carter DC, Chang B, Ho JX, Keeling K, Krishnasami Z. Preliminary crystallographic studies of four crystal forms of serum albumin. Eur J Biochem 1994, 226:1049-1052.
- 6. Peterman BF, Laidler KJ. Study of reactivity of tryptophan residues in serum albumins and lysozyme by N-bromosuccinamide fluorescence quenching. Arch Biochem Biophys 1980, 199:158-164.
- 7. http://www.drugbank.ca/drugs/DB06751
- 8. Sharma A, Schulman SG. Introduction to fluorescence spectroscopy. John Wiley & Sons, Inc., New York, 1999, pp. 58-59.
- 9. Kowalska-Baron A, Chan M, Gałęcki K, Wysocki S. Photophysics of indole, tryptophan and N-acetyl-L-tryptophanamidetryptophan (NATA): heavy atom effect. Spectrochim Acta A 2012, 98:282-289.
- 10. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem 2009, 30:2785-2791.
- 11. Cosconati S, Forli S, Perryman AL, Harris R, Goodsell DS, Olson AJ. Virtual Screening with AutoDock: Theory and practice. Expert Opin Drug Dis 2010, 5:597- 607.
- 12. Forli S, Olson AJ. A force field with discrete displaceable waters and desolvation entropy for hydrated ligand docking. J Med Chem 2012, 55:623-638.
- 13. http://www.rcsb.org/pdb/explore/explore.do?structureId=4f5s
- 14. Anandakrishnan R, Aguilar B, Onufriev AV. H++ 3.0: automating pK prediction and the preparation of biomolecular structures for atomistic molecular modeling and simulation. Nucleic Acids Res 2012, 40:537-541.
- 15. Huang P, Kong Y, Li Z, Gao F, Cui D. Copper selenidenanosnakes: bovine serum albumin-assisted room temperature controllable synthesis and characterization. Nano Lett 2010, 5:949-956.
- 16. Nafisi S, Panahyab A, Sadeghi BB. Interactions between β-carboline alkaloids and bovine serum albumin: investigation by spectroscopic approach. J Lumin 2012, 132:2361-2366.
- 17. Mishra B, Barik A, Priyadarsini K, Mohan H. Fluorescence spectroscopic studies on binding of a flavonoid antioxidant quercetin to serum albumins. J Chem Soc 2005, 117:641-647.
- 18. Moriyama Y, Ohta D, Hachiya K, Mitsui Y, Takeda K. Fluorescence behaviour of tryptophan residues of bovine and human serum albumins in ionic surfactant solutions: a comparative study of the two and one tryptophan(s) of bovine and human albumin. J Protein Chem 1996, 15:265-272.
- 19. Williams ATR, Winfield SA, Miller JN. Relative fluorescence quantum yields using a computer controlled luminescence spectrometer. Analyst 1983, 108:1067-1068.
- 20. Szabo AG, Rayner DM. Fluorescence decay of tryptophan conformers in aqueous solution. J Am Chem Soc 1980, 101:554-563.
- 21. Daabees HG. Selective differential spectrophotometric methods for determination of niclosamide and drotaverine hydrochloride. Anal Lett 2000, 33:639-656.
- 22. Géher J, Szabó É. Computer-aided spectrophotometric determination of multicomponent drugs. J Pharm Biomed Anal 1988, 6:757-764.
- 23. El-Wasseef DR, El-Sherbiny D, Eid M, Belal F. Spectrofluorometric determination of drotaverine hydrochloride in pharmaceutical preparations. Anal Lett 2008, 41:2354-2362.
- 24. Lakowicz JR. Principles of fluorescence spectroscopy. Kluwer Academic/Plenum Publishers, New York, 1999, pp. 129-130.
- 25. Ross PD, Subramanian S. Thermodynamics of protein association reactions: forces contributing to stability. Biochemistry 1981, 20:3096-3102.
- 26. Bi S, Yan L, Sun Y, Zhang H. Investigation of ketoprofen binding to human serum albumin by spectral methods. Spectrochim. Acta A 2011, 78:410-414.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9369b82f-10a0-4a66-a107-de0ff9333e21