PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Development and validation of a high-resolution hydrodynamic model for the Polish Marine Area

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study presents the development and validation of a high-resolution 3D hydrodynamic model, CEMBS-PolSea, designed to resolve submesoscale features in Polish Marine Areas. The model, derived from the Community Earth System Model (CESM), employs a horizontal resolution of 575 m and 66 vertical layers. It incorporates advanced parameterizations for horizontal and vertical mixing processes, and integrates meteorological and river inflow data. A novel satellite data assimilation module was implemented to enhance model accuracy. The model was calibrated and validated using in situ measurements from the International Council for the Exploration of the Sea (ICES) database and satellite observations over the period 2019–2023. Results demonstrate strong agreement between model outputs and observational data, particularly for surface temperature (Pearson’s r = 0.95) and salinity (r = 0.89). The model successfully captures temporal and spatial variations in temperature and salinity profiles, with some discrepancies noted in deeper layers. The integration of satellite data assimilation significantly improved model performance, particularly in surface temperature predictions. This high-resolution model represents a significant advancement in simulating complex coastal dynamics and submesoscale features in the Polish Marine Areas, offering a valuable tool for marine ecosystem management and climate change impact studies in the region.
Czasopismo
Rocznik
Strony
Art. no. 67105
Opis fizyczny
Bibliogr. 19 poz., map., tab., rys.
Twórcy
  • Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
  • Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
  • Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
  • Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
  • Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
Bibliografia
  • 1. Daewel, U., Schrum, C., 2013. Simulating long-term dynamics of the coupled North Sea and Baltic Sea ecosystem with ECOSMO II: Model description and validation. J. Marine Syst, 119-120, 30-49. https://doi.org/10.1016/j.jmarsys.2013.03.008
  • 2. Dybowski, D., Dzierzbicka-Głowacka, L., 2023. Analysis of the impact of nutrients deposited from the land side on the waters of Puck Lagoon (Gdańsk Basin, Southern Baltic): A model study. Oceanologia 65(2), 386-397. https://doi.org/10.1016/j.oceano.2022.11.005
  • 3. Dybowski, D., Jakacki, J., Janecki, M., Nowicki, A., Rak, D., Dzierzbicka-Glowacka, L., 2019. High-Resolution Ecosystem Model of the Puck Bay (Southern Baltic Sea) – Hydrodynamic Component Evaluation. Water 11, 2057. https://doi.org/10.3390/w11102057
  • 4. Dybowski, D., Janecki, M., Nowicki, A., Dzierzbicka-Glowacka, L.A., 2020. Assessing the Impact of Chemical Loads from Agriculture Holdings on the Puck Bay Environment with the High-Resolution Ecoystem Model of the Puck Bay, Southern Baltic Sea. Water 12, 2068. https://doi.org/10.3390/w12072068
  • 5. Dzierzbicka-Glowacka, L., Dybowski, D., Janecki, M., Wojciechowska, E., Szymczycha, B., Potrykus, D., Nowicki, A., Szymkiewicz, A., Zima, P., Jaworska-Szulc, B., Pietrzak, S., Pazikowska-Sapota, G., Kalinowska, D., Nawrot, N., Wielgat, P., Dembska, G., Matej-Łukowicz, K., Szczepańska, K., Puszkarczuk, T., 2022. Modelling the impact of the agricultural holdings and land-use structure on the quality of inland and coastal waters with an innovative and interdisciplinary toolkit. Agr. Water Manage. 263, 107438. https://doi.org/10.1016/j.agwat.2021.107438
  • 6. Dzierzbicka-Głowacka, L., Jakacki, J., Janecki, M., Nowicki, A., 2013a. Activation of the operational ecohydrodynamic model (3D CEMBS) – the hydrodynamic part. Oceanologia 55(3), 519-541. http://dx.doi.org/10.5697/oc.55-3.519
  • 7. Dzierzbicka-Głowacka, L., Janecki, M., Nowicki, A., Jakacki, J., 2013b. Activation of the operational ecohydrodynamic model (3D CEMBS) – the ecosystem module. Oceanologia 55(3), 543-572. http://dx.doi.org/10.5697/oc.55-3.543
  • 8. Eilola, K., Meier, H.E.M., Almroth, E., 2009. On the dynamics of oxygen, phosphorus and cyanobacteria in the Baltic Sea; A model study. J. Marine Syst. 75, 163-184. https://doi.org/10.1016/j.jmarsys.2008.08.009
  • 9. Fennel, K., Wilkin, J., Levin, J., Moisan, J., O’Reilly, J., Haidvogel, D., 2006. Nitrogen cycling in the Middle Atlantic Bight: Results from a three-dimensional model and implications for the North Atlantic nitrogen budget. Global Biogeochem. Cy. 20. https://doi.org/10.1029/2005GB002456
  • 10. Gräwe, U., Holtermann, P., Klingbeil, K., Burchard, H., 2015. Advantages of vertically adaptive coordinates in numerical models of stratified shelf seas. Ocean Model. 92, 56-68. https://doi.org/10.1016/j.ocemod.2015.05.008
  • 11. Holt, J., Proctor, R., 2008. The seasonal circulation and volume transport on the northwest European Continental shelf: A fine-resolution model study. J. Geophys. Res.- Oceans 113. https://doi.org/10.1029/2006JC004034
  • 12. Hordoir, R., Axell, L., Höglund, A., Dieterich, C., Fransner, F., Gröger, M., Liu, Y., Pemberton, P., Schimanke, S., Andersson, H., Ljungemyr, P., Nygren, P., Falahat, S., Nord, A., Jönsson, A., Lake, I., Döös, K., Hieronymus, M., Dietze, H., Löptien, U., Kuznetsov, I., Westerlund, A., Tuomi, L., Haapala, J., 2019. Nemo-Nordic 1.0: A NEMO-based ocean model for the Baltic and North seas – Research and operational applications. Geosci. Model Dev. 12, 363-386. https://doi.org/10.5194/gmd-12-363-2019
  • 13. Lehmann, A., Getzlaff, K., Harlaß, J., 2011. Detailed assessment of climate variability of the Baltic Sea area for the period 1958-2009. Climate Res. 46, 185-196. https://doi.org/10.3354/cr00876
  • 14. Markus Meier, H.E., 2007. Modeling the pathways and ages of inflowing salt- and freshwater in the Baltic Sea. Estuar. Coast. Shelf Sci. 74(1), 610-627. https://doi.org/10.1016/j.ecss.2007.05.019
  • 15. Meier, H.E.M., Andersson, H.C., Arheimer, B., Donnelly, C., Eilola, K., Gustafsson, B.G., Kotwicki, L., Neset, T.-S., Niiranen, S., Piwowarczyk, J., Savchuk, O.P., Schenk, F., Węsławski, J.M., Zorita, E., 2014. Ensemble Modeling of the Baltic Sea Ecosystem to Provide Scenarios for Management. AMBIO 43, 37-48. https://doi.org/10.1007/s13280-013-0475-6
  • 16. Murawski, J., She, J., Mohn, C., Frishfelds, V., Nielsen, J.W., 2021. Ocean Circulation Model Applications for the Estuary-Coastal-Open Sea Continuum. Front. Mar. Sci. 8. https://doi.org/10.3389/fmars.2021.657720
  • 17. Nowicki, A., Dzierzbicka-Głowacka, L., Janecki, M., Kałas, M., 2015. Assimilation of the satellite SST data in the 3D CEMBS model. Oceanologia 57(1), 17-24. https://doi.org/10.1016/j.oceano.2014.07.001
  • 18. Schrum, C., Hübner, U., Jacob, D., Podzun, R., 2003. A coupled atmosphere/ice/ocean model for the North Sea and the Baltic Sea. Climate Dynam. 21, 131-151. https://doi.org/10.1007/s00382-003-0322-8
  • 19. Timmermann, R., Beckmann, A., Hellmer, H., 2002. Simulation of ice-ocean dynamics in the Weddell Sea. Part I: Model configuration and validation. J. Geophys. Res. C3 107. https://doi.org/10.1029/2000JC000741
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-93689436-e6a2-47c1-acf0-2bfee24724c5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.