Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Improvement of equal channel angular pressing (ECAP) efficiency is an important challenge for industrialization of this technique. The reduction of pressing load and improvement of material mechanical properties are among the most challengeable subjects during this process. In this research, commercial pure aluminum has been ECAPed at room temperature using conventional and ultrasonic vibration techniques to investigate the influence of ultrasonic wave on the pressing load and mechanical characteristics of deformed samples. The results showed that the superimposing ultrasonic vibration on the ECAP process not only decreases the required punch load, but also improves the mechanical properties of the material as compared to the conventional condition. Interestingly, the ultrasonic vibration assisted process leads to about 16%, 10% and 12% increments at the yield strength, ultimate tensile strength and hardness value respectively and also, 9% reduction at the punch load. Furthermore, the dislocation density of the sample produced by ultrasonic assisted ECAP is about 35% more than the achieved conventional sample.
Czasopismo
Rocznik
Tom
Strony
249--255
Opis fizyczny
Bibliogr. 30 poz., rys., wykr.
Twórcy
autor
- Department of Mechanical Engineering, Prince Mohammad Bin Fahd University, Al Khobar, Saudi Arabia
- Department of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
autor
- Department of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
autor
- Department of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
autor
- Department of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
autor
- Department of Mechanical Engineering, University of Maragheh, Maragheh, Iran
Bibliografia
- [1] R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Bulk nanostructured materials from severe plastic deformation, Progress in Materials Science 45 (2000) 103–189.
- [2] T.G. Langdon, Twenty-five years of ultrafine-grained materials: achieving exceptional properties through grain refinement, Acta Materialia 61 (2013) 7035–7059.
- [3] A. Azushima, R. Kopp, A. Korhonen, D.Y. Yang, F. Micari, G.D. Lahoti, et al., Severe plastic deformation (SPD) processes for metals, CIRP Annals – Manufacturing Technology 57 (2008) 716–735.
- [4] R.Z. Valiev, T.G. Langdon, Principles of equal-channel angular pressing as a processing tool for grain refinement, Progress in Materials Science 51 (2006) 881–981.
- [5] F. Djavanroodi, M. Ebrahimi, Effect of die channel angle, friction and back pressure in the equal channel angular pressing using 3D finite element simulation, Materials Science and Engineering A 527 (2010) 1230–1235.
- [6] A.R. Eivani, A.K. Taheri, An upper bound solution of ECAE process with outer curved corner, Journal of Materials Processing Technology 182 (2007) 555–563.
- [7] A.R. Eivani, A.K. Taheri, The effect of dead metal zone formation on strain and extrusion force during equal channel angular extrusion, Computation Materials Science 42 (2008) 14–20.
- [8] H. Seiner, L. Bodnárová, P. Sedlák, M. Janeček, O. Srba, R. Král, et al., Application of ultrasonic methods to determine elastic anisotropy of polycrystalline copper processed by equal-channel angular pressing, Acta Materialia 58 (2010) 235–247.
- [9] F. Djavanroodi, H. Ahmadian, K. Koohkan, R. Naseri, Ultrasonic assisted-ECAP, Ultrasonics 53 (2013) 1089–1096.
- [10] F. Ahmadi, M. Farzin, Finite element analysis of ultrasonic- assisted equal channel angular pressing, Proceedings of the Institution of Mechanical Engineers. Part C: Journal of Mechanical Engineering Science (2013).
- [11] R. Pohlman, E. Lehfeldt, Influence of ultrasonic vibration on metallic friction, Ultrasonics 4 (1966) 178–185.
- [12] V. Kumar, I. Hutchings, Reduction of the sliding friction of metals by the application of longitudinal or transverse ultrasonic vibration, Tribology International 37 (2004) 833–840.
- [13] O. Izumi, K. Oyama, Y. Suzuki, Effects of superimposed ultrasonic vibration on compressive deformation of metals, Transactions of the Japan Institute of Metals 7 (3) (1966) 162–167.
- [14] J.-C. Hung, Y.-C. Tsai, C. Hung, Frictional effect of ultrasonic- vibration on upsetting, Ultrasonics 46 (2007) 277–284.
- [15] J. Hung, M. Chiang, The Influence of Ultrasonic-vibration on Double Backward-Extrusion of Aluminum Alloy, vol. II, 2009.
- [16] Y. Liu, S. Suslov, Q. Han, C. Xu, L. Hua, Microstructure of the pure copper produced by upsetting with ultrasonic vibration, Materials Letters 67 (2012) 52–55.
- [17] Y. Liu, Q. Han, L. Hua, C. Xu, Numerical and experimental investigation of upsetting with ultrasonic vibration of pure copper cone tip, Ultrasonics 53 (2013) 803–807.
- [18] C.-M. Suh, G.-H. Song, M.-S. Suh, Y.-S. Pyoun, Fatigue and mechanical characteristics of nano-structured tool steel by ultrasonic cold forging technology, Materials Science and Engineering A 443 (2007) 101–106.
- [19] C. Bunget, G. Ngaile, Influence of ultrasonic vibration on micro-extrusion, Ultrasonics 51 (2011) 606–616.
- [20] S.A.A.A. Mousavi, H. Feizi, R. Madoliat, Investigations on the effects of ultrasonic vibrations in the extrusion process, Journal of Materials Processing Technology 187–188 (2007) 657–661.
- [21] T. Jimma, Y. Kasuga, N. Iwaki, O. Miyazawa, E. Mori, K. Ito, et al., An application of ultrasonic vibration to the deep drawing process, Journal of Materials Processing Technology 80–81 (1998) 406–412.
- [22] K. Siegert, J. Ulmer, Influencing the friction in metal forming processes by superimposing ultrasonic waves, CIRP Annals – Manufacturing Technology 50 (2001) 195–200.
- [23] M. Hayashi, M. Jin, S. Thipprakmas, M. Murakawa, J.-C. Hung, Y.-C. Tsai, et al., Simulation of ultrasonic-vibration drawing using the finite element method (FEM), Journal of Materials Processing Technology 140 (2003) 30–35.
- [24] M. Murakawa, M. Jin, The utility of radially and ultrasonically vibrated dies in the wire drawing process, Journal of Materials Processing Technology 113 (2001) 81–86.
- [25] Y. Ashida, H. Aoyama, Press forming using ultrasonic vibration, Journal of Materials Processing Technology 187– 188 (2007) 118–122.
- [26] G. Faraji, M. Ebrahimi, A.R. Bushroa, Ultrasonic assisted tubular channel angular pressing process, Materials Science and Engineering A 599 (2014) 10–15.
- [27] E. Hosseini, M. Kazeminezhad, A. Mani, E. Rafizadeh, On the evolution of flow stress during constrained groove pressing of pure copper sheet, Computational Materials Science 45 (2009) 855–859.
- [28] S.S. Satheesh Kumar, T. Raghu, Tensile behaviour and strain hardening characteristics of constrained groove pressed nickel sheets, Materials and Design 32 (2011) 4650–4657.
- [29] R. Fernández, G. González-Doncel, A unified description of solid solution creep strengthening in Al–Mg alloys, Materials Science and Engineering A 550 (2012) 320–324.
- [30] J.C. Hung, C.C. Lin, Investigations on the material property changes of ultrasonic-vibration assisted aluminum alloy upsetting, Materials and Design 45 (2013) 412–420.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-93644a5e-1051-4341-b72b-24cbbe4ed746