PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Empiryczne funkcje własne regionalnego pola barycznego w basenie Północnego Atlantyku i Europy

Autorzy
Identyfikatory
Warianty tytułu
EN
Empirical Orthogonal Functions of the large scale sea level pressure field over North Atlantic and Europe
Języki publikacji
PL
Abstrakty
EN
The Empirical Orthogonal Functions method has been applied to study the spatial and time variability of the large scale pressure over North Atlantic and Europe during the period 1871-1990. The dominating mode of spatial variability, NAO-like, explains 33% of the total variance and presents the zonal air mass flow over the region. Such mode of variability is characterized by systematic intensification of westerly flow over the region during last 120 years. The second pattern presents two pressure systems of opposite sign over region of consideration. It explains 20% of the total variance. The centers of one pressure system is located over the continent, in the north-eastern part of the region. The second center is localized over the ocean, however is int1uencing the great part of Europe. The third pattern. explaining 18% of total variance, presents the region under influence of large scale pressure system with center located over northern Ireland and Scotland. The fourth pattern presents the region under influence of the three pressure systems. This mode explains10% of the total variance. The three leading modes explain more than 80% of the total variance in case of 50⁰N.
Rocznik
Tom
Strony
9—22
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
autor
  • Instytut Meteorologii i Gospodarki Wodnej, Oddział Morski w Gdyni
Bibliografia
  • 1. Barnett,T., Preisendorfer, R., 1987. Origins and levels of monthly and seasonal forecast skill for United States surface air temperature determinated by canonical correlation analysis. Mon. Wea. Rev, 115.1825-1850.
  • 2. Barnston A., Livezey R., 1987. Classification, Seasonality and Persistence of Low-Frequency Atmospheric Circulation Patterns. Mon.Wea. Rev., vol.115, 1083-1126.
  • 3. Biau G., Zorita E. et al.; 1999. Estimation of precipitation by kriging in EOF space., J.Climate, 12. 1070-1085
  • 4. Cahalan R. et al.; 1996. Empirical orthogonal functions of monthly precipitation and temperature over the United States and homogeneous stochastic models. J. Geophysical Research, 101, No D21, 26, 309-26.
  • 5. Chen J, Harr P., 1993. Interpretationof Extended Empirical Orthogonal Function (EEOF) Analysis, Monthly Wather Review, 121,2631-2636.
  • 6. Cheng X. et al.; 1995. Robustness of Low-Frequency Circulation Patterns Derived from EOF and Rotated EOF Analyses, J. Climate, 8,1709-1713.
  • 7. Cui, M., Storch von, H., Zorita E, 1995. Coastal sea level and the large scale climate state: a downsacling exercise for the Japanese Islands. Tellus 47A, 132-144.
  • 8. Dziewulska-Łosiowa A., 1973. Pewne własności pola opadów w Polsce, Przeg. Geofiz., XVII(XXVI) 1-2, 5-25.
  • 9. Folland C.K., Owen J.A, Ward M.N., Coman A.W,1991 Prediction of seasonal rainfall in the Sahel region of Africa using empirical and dynamical methods. J. Forecasting 10, 21-56.
  • 10. Hanssen-Bauer I, Nordli P, Forland E., 1996. Principal Component Analysis of the NACD Temperature Series. Klima, DNMI Report 1/96.
  • 11. Harrel J., 1995. Decadal Trends in the North Atlantic Oscillation Regional Temperatures and Precipitation. Science, vol. 269, 676-679.
  • 12. Hardy D., Walton J., 1978. Principal Components Analysis of Vector Wind Measurements, J. Applied Meteorology, 17, 1153-1162.
  • 13. Hotelling, H., 1935. The most predictable criterion. J. Ed. Psych, 26,139-142.
  • 14. Klink K., Willmott C., 1989. Principal Components of the Surface wind Field in the United States: A Comparison of Analyses Based Upon wind Velocity, Direction, and Speed J.Climatology, 9, 293-308.
  • 14. Kim K, Y., North G, R, 1993. EOF Analysis of Surface Temperature Field in a Stochastic Climate Model, ,J. Climate 6, 1681-1690.
  • 15. Kim K. et al.; 1996. EOFs of One-Dimensional Cyclostationary Time Series: Computations, Examples, and Stochastic Modeling, J. Atm. Sciences, 53, No. 7, 1007-1017.
  • 16. Legler D., 1983. Empirical Orthogonal Function Analysis of Wind Vectors over the Tropical Pacific Region, BAMS, 64, 3, 234-241
  • 17. Lorenz, E., 1956. Empirical orthogonal functions and statistical weather prediction. Tech. Rep., Statistical Forecast Project 1, Dept. of Meteor., MIT,49pp.
  • 18. O’Lenic E, Livezey R., 1988. Practical Considerations in the Use of Rotated Principal Component Analysis (RPCA) in Diagnostic Studies of Upper-Air Height Fields, Mon. Weather Rev., 116, 1682-1689.
  • 19. Miętus M., 1999. Rola regionalnej cyrkulacji atmosferycznej w kształtowaniu warunków klimatycznych i oceanograficznych w polskiej strefie brzegowej Morza Bałtyckiego, Materiały Badawcze IMGW, Seria Meteorologia (w druku)
  • 20. Miętus M., Storch von H, 1997. Reconstruction of the wave climate in the Proper Baltic Basin, April1947-March 1988, GKSS external Report, 97/E/28, 30pp.
  • 21. Pearson, K., 1902. On lines and planes of closest fit to systems ot points in space. Phil. Mag., 2,559-572.
  • 22. Pyka, J.L, 1990. Zmienność pola barycznego i termicznego swobodnej atmosfery nad Europą w latach 1961-1985. Studia Geograficzne UWr, Vol. LV, 131pp.
  • 23. Richman M., 1986. Rotation of Principal Components, J. Climatology, 6, 293-335.
  • 24. Smith T. et al.; 1996. Reconstruction of Historical Sea Surface Temperatures Using Empirical Orthogonal Functions, J. Climate, 9, 1403-1420.
  • 25. Storch v. H, 1993. Spatial patterns: EOFs and CCA In: Storch v. H., Navarra A (red.), Analysis of Climate Variability. Applications of Statistical Techniques, Springer, 227-257.
  • 26. Ward M.N., 1993. Analysing the boreal summer relationship between worldwide seasurface temperature and atmospheric variability. In: Storch v. H., Navarra A. (red.), Analysis of Climate Variability. Applications of Statistical Techniques, Springer, 95-117.
  • 27. Weare B., Nasstrom J., 1982. Examples of Extended Empirical Orthogonal Function Analysis, Monthly Wather Review, 110,481-485.
  • 28. Werner P, Storch v. H, 1993. Interannual variability of Central European mean temperature in January-February and its relation to large-scale circulation. Clim. Res. v. 3: 195-207.
  • 29. Wibig, J., 1999a. Cyrkulacja atmosferyczna nad Europą na powierzchni izobarycznej 500 hPa, cz. I. Zima, Przegl. Geofiz. (w druku).
  • 30. Wibig, J., 1999b Cyrkulacja atmosferyczna nad Europą na powierzchni izobarycznej 500 hPa, cz. II. Wiosna, lato i jesień, Przegl. Geofiz. (w druku).
  • 31. Wróblewski A, 1986. On some statistical characteristics of the sea water temperature variations at (he Polish Baltic coast. Oceanologia, 25, 23-35.
  • 32. Wróblewski A, 1988 Statistical linear dependences between near-shore currents in the Gulf of Gdańsk and the atrnospheric pressure field over the Baltic. Oceanologia, 25, 37-51.
  • 33. Wróblewski A., 1992. The effect of the atmospheric pressure field on seasonal Baltic Sea level oscillations, Oceanologia, NO.32, 5-18.
  • 34. Wróblewski A, 1993. Analysis and forecast of long-term sea level changes along the Polish Baltic Sea coast. Part I: Annual sea level maxima. Oceanologia, No. 33, 65-85.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9363c84a-1cd4-4ffe-9170-b1faf16afe09
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.