Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We evaluated the temporal and spatial trends of the hydrological (temperature and sea ice) and biochemical (chlorophyll-a concentration) characteristics in springtime in the Baltic Sea. Both are strongly affected by climate change, resulting in a decrease in the duration of sea-ice melting in the previous decade. A new regime of sea ice began in 2008 and in all basins of the Baltic Sea, a rapid warming during spring could be detected. Using satellite data, the temporal and spatial variations in spring bloom were analysed during severe and warmer winters. Using a coupled hydrodynamic-biogeochemical model, we tested the response of spring bloom to the changing ice conditions. The results of the modelling indicated that the presence of ice significantly influences the predicted chlorophyll-a concentration values in the Baltic Sea. Therefore, it is necessary that any coupled model system has a realistic ice model to ensure the best simulation results for the lower trophic food web as well.
Czasopismo
Rocznik
Tom
Strony
312--326
Opis fizyczny
Bibliogr. 69 poz., map., tab., rys., wykr.
Twórcy
autor
- European Commission, Joint Research Centre, Ispra, Varese, Italy
autor
- Leibniz-Institute for Baltic Sea Research Warnemünde, Rostock, Germany
autor
- Hereditas, Tartu, Estonia
autor
- European Commission, Joint Research Centre, Ispra, Varese, Italy
Bibliografia
- 1. Abalansa, S., El Mahrad, B., Vondolia, G.K., Icely, J., Newton, A., 2020. The marine plastic litter issue: a social-economic analysis. Sustainability 12 (20), 8677. https://doi.org/10.3390/su12208677
- 2. BACC II Author Team, 2015. Second Assessment of Climate Change for the Baltic Sea Basin. Springer International Publ., 146 pp.
- 3. Bai, J., 1994. Least squares estimation of a shift in linear processes. J. Time Ser. Anal. 15 (5), 453-472. https://doi.org/10.1111/j.1467-9892.1994.tb00204.x
- 4. Bai, J., 1997. Estimation of a change point in multiple regression models. Rev. Econ. Stat. 79 (4), 551-563.
- 5. Bai, J., Perron, P., 1998. Estimating and testing linear models with multiple structural changes. Econometrica 66 (1), 47-78. https://doi.org/10.2307/2998540
- 6. Bai, J., Perron, P., 2003. Computation and analysis of multiple structural change models. J. Appl. Econ. 18 (1), 1-22. https://doi.org/10.1002/jae.659
- 7. Brierley, A.S., Kingsford, M.J., 2009. Impacts of climate change on marine organisms and ecosystems. Curr. Biol. 19 (14), R602—R614. https://doi.org/10.1016/j.cub.2009.05.046
- 8. Burchard, H., 1999. Burchard, Hans. Recalculation of surface slopes as forcing for numerical water column models of tidal flow. Applied Mathematical Modelling 23 (10), 737-755.
- 9. Burchard, H., Bolding, K., 2002. GETM, a general estuarine transport model. Technical report, European Commsission.
- 10. Chiswell, S.M., Calil, P.H., Boyd, P.W., 2015. Spring blooms and annual cycles of phytoplankton: a unified perspective. J. Plankton Res. 37 (3). https://doi.org/10.1093/plankt/fbv021
- 11. Eilola, K., Mårtensson, S., Meier, H.E.M., 2013. Modeling the impact of reduced sea ice cover in future climate on the Baltic Sea biogeochemistry. Geophys. Res. Lett. 40 (1), 149-154. https://doi.org/10.1029/2012GL054375
- 12. Friedland, R., Hiller, A., Janßen, H., 2013. Melting Sea Ice in the Baltic Sea — changes and possible effects. Coast. Mar. 22 (1), 9.
- 13. Friedland, R., Neumann, T., Schernewski, G., 2012. Climate change and the Baltic Sea action plan: model simulations on the future of the western Baltic Sea. J. Mar. Syst. 105, 175-186. https://doi.org/10.1016/j.jmarsys.2012.08.002
- 14. Gemmell, B.J., Oh, G., Buskey, E.J., Villareal, T.A., 2016. Dynamic sinking behaviour in marine phytoplankton: rapid changes in buoyancy may aid in nutrient uptake. Proc. Royal Soc. B Biol. Sci. 283 (1840). https://doi.org/10.1098/rspb.2016.1126
- 15. Griffiths, J. R.Griffiths, J. R., Kadin, M., Nascimento, F. J. A., Tamelander, T., Törnroos, A., Bonaglia, S., et al., 2017. The importance of benthic—pelagic coupling for marine ecosystem func-tioning in a changing world. Glob. Change Biol. 23, 2179-2196. https://doi.org/10.1111/gcb.13642
- 16. Gröger, J.P., Hinrichsen, H.H., Polte, P., 2014. Broad-scale climate influences on spring-spawning herring (Clupea harengus, L.) recruitment in the Western Baltic Sea. PLoS One 9 (2), e87525. https://doi.org/10.1371/journal.pone.0087525
- 17. Hagen, E., Feistel, R., 2005. Climatic turning points and regime shifts in the Baltic Sea region: the Baltic winter index (WIBIX) 1659—2002. Boreal Environ. Res. 10 (3), 211-224.
- 18. Haas C, Christian, 2004. Late-summer sea ice thickness variability in the Arctic Transpolar Drift 1991—2001 derived from ground-based electromagnetic sounding. Geophys. Res. Lett. 31 (9). https://doi.org/10.1029/2003GL019394
- 19. HELCOM, 2018. Inputs of hazardous substances to the Baltic Sea. In: Baltic Sea Environment Proceedings No. 162.
- 20. Hersbach, H., et al., 2020. The ERA5 global reanalysis. Q. J. Roy. Meteor. Soc. 146, 1999-2049. https://doi.org/10.1002/qj.3803
- 21. Hjerne, O., Hajdu, S., Larsson, U., Downing, A., Winder, M., 2019. Climate driven changes in timing, composition and size of the Baltic Sea phytoplankton spring bloom. Front. Mar. Sci. 6, 482. https://doi.org/10.3389/fmars.2019.00482
- 22. Ivanova, M.B., 1985. Productivity of Planktonic Crustaceans in Freshwater Water Bodies. Nauka 220.
- 23. Jørgensen, S.E., 1994. Models as instruments for combination of ecological theory and environmental practice. Ecol. Modell. 75-76, 5-20. https://doi.org/10.1016/0304-3800(94)90003-5
- 24. Jørgensen H, Hanne B. Hede, et al.Michael Møller Hansen, Volker Loeschcke, 2005. Spring-spawning herring (Clupea harengus L.) in the southwestern Baltic Sea: do they form genetically distinct spawning waves? ICES J. Mar. Sci. 62 (6). https://doi.org/10.1016/j.icesjms.2005.04.007
- 25. Kahru, M., Elmgren, R., Savchuk, O.P., 2016. Changing seasonality of the Baltic Sea. Biogeosci. Discuss. 13 (4), 1009-1018. https://doi.org/10.5194/bg-13-1009-2016
- 26. Käse, L., Geuer, J.K., 2018. Phytoplankton responses to marine climate change—an introduction. In: Jungblut, S., Liebich, V., Bode, M. (Eds.), YOUMARES 8—Oceans Across Boundaries: Learning from Each Other. Springer, Cham, 55-71. https://doi.org/10.1007/978-3-319-93284-2_5
- 27. Keevallik, S., 2011. Shifts in meteorological regime of the late winter and early spring in Estonia during recent decades. Theor. Appl. Climatol. 105 (1-2), 209-215. https://doi.org/10.1007/s00704-010-0356-x
- 28. Klais, R., Norros, V., Lehtinen, S., Tamminen, T., Olli, K., 2017a. Community assembly and drivers of phytoplankton functional structure. Funct. Ecol. 31 (3), 760-767. https://doi.org/10.1111/1365-2435.12784
- 29. Klais, R., Otto, S.A., Teder, M., Simm, M., Ojaveer, H., 2017b. Winter—spring climate effects on small-sized copepods in the coastal Baltic Sea. ICES J. Mar. Sci. 74 (7), 1855-1864. https://doi.org/10.1093/icesjms/fsx036
- 30. Klais, R., Tamminen, T., Kremp, A., Spilling, K., An, B.W., Hajdu, S.,Olli, K., 2013. Spring phytoplankton communities shaped by interannual weather variability and dispersal limitation: mechanisms of climate change effects on key coastal primary producers. Limnol. Oceanogr. 58 (2), 753-762. https://doi.org/10.4319/lo.2013.58.2.0753
- 31. Lei, R., Leppäranta, M., Erm, A., Jaatinen, E., Pärn, O., 2011. Field investigations of apparent optical properties of ice cover in Finnish and Estonian lakes in winter 2009. Est. J. Earth Sci. 60(50). https://doi.org/10.3176/earth.2011.1.05
- 32. Leppäranta, M., Myrberg, K., 2009. Physical Oceanography of the Baltic Sea. Springer Science & Business Media.
- 33. Lilover, M.-J., Pavelson, J., Kõuts, T., Lepparanta, M., 2018. Characteristics of high-resolution sea ice dynamics in the Gulf of Finland, Baltic Sea. Boreal Env. Res. 23, 175-191.
- 34. Lipsewers, T., 2020. Spring bloom dynamics in the Baltic Sea: from the environment to macro-elements and microbial interactions. Dissertationes Schola Doctoralis Scientiae Circumiectalis, Alimentariae, Biologicae. Universitatis Helsinkiensis.
- 35. Macias Moy, D., Friedland, R., Stips, A., Miladinova, S., Parn, O., Garcia-Gorriz, E., Melin, F., 2020. Applying the Marine Modelling Framework to Estimate Primary Production in EU Marine Waters, EUR 30546EN. Publications Office of the European Union, Luxembourg.
- 36. Mantua, N.J., 2004. Methods for detecting regime shifts in large marine ecosystems: a review with approaches applied to North Pacific data. Progr. Oceanogr. 60 (2-4), 165-182. https://doi.org/10.1016/j.pocean.2004.02.016
- 37. Meier, H.E.M., Döscher, R., Coward AC., Nycander J., Döös K., 1999. RCO—Rossby Centre regional Ocean climate model: modelde-scription (version 1.0) and first results from the hindcast period 1992/93. Reports Oceanography 26, 102.
- 38. Meier, H.E.M., Edman, M.K., Eilola, K.J., Placke, M., Neumann, T., Andersson, H.C., Brunnabend, S.E., Dieterich, C., Frauen, C., Friedland, R., Gröger, M., Gustafsson, B.G., Gustafsson, E., Isaev, A., Kniebusch, M., Kuznetsov, I., Müller-Karulis, B., Omstedt, A., Ryabchenko, V., Saraiva, S., Savchuk, O.P., 2018. Assessment of eutrophication abatement scenarios for the Baltic Sea by multi-model ensemble simulations. Front. Mar. Sci. 5, 440. https://doi.org/10.3389/fmars.2018.00440
- 39. Murray, C.J., Müller-Karulis, B., Carstensen, J., Conley, D.J., Gustafsson, B.G., Andersen, J.H., 2019. Past, present and future eutrophication status of the Baltic Sea. Front. Mar. Sci. 6, 2. https://doi.org/10.3389/fmars.2019.00002
- 40. Neumann, T., 2000. Towards a 3D-ecosystem model of the Baltic Sea. Journal of Marine Systems 25, 405-419. https://doi.org/10.1016/S0924-7963(00)00030-0
- 41. Neumann, T., 2010. Climate-change effects on the Baltic Sea ecosystem: a model study. J. Mar. Syst. 81 (3), 213-224. https://doi.org/10.1016/j.jmarsys.2009.12.001
- 42. Neumann, T., Eilola, K., Gustafsson, B., Müller-Karulis, B., Kuznetsov, I., Markus Meier, H.E., Savchuk, O.P., 2012. Extremes of temperature, oxygen and blooms in the Baltic Sea in a changing climate. Ambio 41 (6), 574-585.
- 43. Neumann, T., Friedland, R., 2011. Climate change impacts on the Baltic Sea. In: Schernewski, G., Hofstede, J., Neumann, T. (Eds.), Global Change and Baltic Coastal Zones. Springer Science Business Media (Coastal Research Library), Dordrecht, 23-32.
- 44. Neumann, T., Schernewski, G., 2008. Eutrophication in the Baltic Sea and shifts in nitrogen fixation analysed with a 3D ecosystem model. J. Mar. Syst. 74 (1-2), 592-602.
- 45. Neumann, T., Siegel, H., Moros, M., Gerth, M., Kniebusch, M., Heydebreck, D., 2020. Ventilation of the northern Baltic Sea. Ocean Sci. 16, 767-780. https://doi.org/10.5194/os-16-767-2020
- 46. Norbäck Ivarsson, L., Andrén, T., Moros, M., Andersen, T.J., Lönn, M., Andrén, E., 2019. Baltic sea coastal eutrophication in a thousand-year perspective. Front. Environ. Sci. 7, 88. https://doi.org/10.3389/fenvs.2019.00088
- 47. Passow, U., 1991. Species-specific sedimentation and sinking velocities of diatoms. Mar. Biol. 108 (3), 449-455.
- 48. Pärn, O., Friedland, R., Garcia Gorriz, E., Stips, A., 2020. Report on the biogeochemical model setup for the Baltic Sea and its applications. Luxembourg: EUR, 30252. Luxembourg: EUR, 30252 https://doi.org/10.2760/672255
- 49. Pärn, O., Lessin, G., Stips, A., 2021. Effects of sea ice and wind speed on Phytoplankton spring bloom in Central and Southern Baltic Sea. PLoS ONE 16 (3), e0242637. https://doi.org/10.1371/journal.pone.0242637
- 50. Pemberton, P., Löptien, U., Hordoir, R., Höglund, A., Schimanke, S., Axell, L., Haapala, J., 2017. Sea-ice evaluation of NEMO-Nordic 1.0: a NEMO-LIM3. 6-based ocean-sea-ice model setup for the North Sea and Baltic Sea. Geosci. Model Dev. 10 (8), 3105-3123. https://doi.org/10.5194/gmd-10-3105-2017
- 51. Pitarch, J., Volpe, G., Colella, S., Krasemann, H., Santoleri, R., 2016. Remote sensing of chlorophyll in the Baltic Sea at basin scale from 1997 to 2012 using merged multi-sensor data. Ocean Sci. 12 (2), 379-389. https://doi.org/10.5194/os-12-379-2016
- 52. Rjazin, J., Alari, V., Pärn, O., 2017. Classifying the ice seasons 1982-2016 using the weighted ice days number as a new winter severity characteristic. EUREKA: Phys. Eng. 5, 49-56.
- 53. Rjazin, J.,Hordoir, R., Pärn, O., 2019. Evaluation of the nemo-nordic model by comparing the sea-ice concentration values in the Baltic Sea. J. Ocean Tech. 14 (2).
- 54. Rjazin, J., Parn, O., 2020. Determining the regime shift of the Baltic Sea ice seasons during 1982—2016. NAŠE MORE: znanstveni časopis za more i pomorstvo 67 (1), 53-59. https://doi.org/10.17818/NM/2020/1.8
- 55. Rodionov, S.N., 2004. A sequential algorithm for testing climate regime shifts. Geophys. Res. Lett. 31 (9), L09204. https://doi.org/10.1029/2004GL019448
- 56. Schmelzer, N., Holfort, J., Tegtmeier, J., Düskau, T., 2014. Ice Winters 2009/2010 to 2013/2014 on the German North and Baltic Sea Coasts. Bundesamtes für Seeschifffahrt und Hydrographie Nr. 53/2014.
- 57. Selin, H., VanDeveer, S.D., 2004. Baltic Sea hazardous substances management: results and challenges. Ambio 33 (3), 153-160.
- 58. Spilling, K., Olli, K., Lehtoranta, J., Kremp, A., Tedesco, L., Tamelander, T., Klais, R., Peltonen, H., Tamminen, T., 2018. Shifting diatom-dinoflagellate dominance during spring bloom in the Baltic Sea and its potential effects on biogeochemical cycling. Front. Mar. Sci. 5, 327. https://doi.org/10.3389/fmars.2018.00327
- 59. Stips, A., Bolding, K., Pohlmann, T., Burchard, H., 2004. Simulating the temporal and spatial dynamics of the North Sea using the new model GETM (general estuarine transport model). Ocean Dynam. 54, 266-283. https://doi.org/10.1007/s10236-003-0077-0
- 60. Stips, A., Lilover, M., 2010. Yet another assessment of climate change in the Baltic Sea area: Breakpoints in climate time series. 2010 IEEE/OES Baltic International Symposium (BALTIC), 1-9.
- 61. Tedesco, L., Piroddi, C., Kämäri, M., Lynam, C., 2016. Capabilities of Baltic Sea models to assess environmental status for marine biodiversity. Marine Policy 70, 1-12. https://doi.org/10.1016/j.marpol.2016.04.021
- 62. Umlauf, L., Burchard, H., 2005. Second-order turbulence closure models for geophysical boundary layers: a review of recent work. Cont. Shelf Res. 25 (7-8), 795-827. https://doi.org/10.1016/j.csr.2004.08.004
- 63. Vihma, T., Haapala, J., Matthäus, W., 2009. Geophysics of sea ice in the Baltic Sea: a review. Progr. Oceanogr. 80 (34), 129-148. https://doi.org/10.1016/j.pocean.2009.02.002
- 64. Von Schuckmann, K., Le Traon, P.-Y., Smith, N., et al., 2018. Copernicus Marine Service Ocean State Report. J. Operational Oceanogr. 11 (Sup. 1), S1-S142. https://doi.org/10.1080/1755876X.2018.1489208
- 65. Wasmund, N., Nausch, G., Matthäus, W., 1998. Phytoplankton spring blooms in the southern Baltic Sea — spatio-temporal development and long-term trends. J. Plankt. Res. 20 (6), 1099-1117. https://doi.org/10.1093/plankt/20.6.1099
- 66. Winder, M., Schindler, D., 2004. Climate change uncouples trophic interactions in an aquatic ecosystem. Ecology 85, 2100-2106. https://doi.org/10.1890/04-0151
- 67. Winder, M., Sommer, U., 2012. Phytoplankton response to a changing climate. Hydrobiologia 698 (1), 5-16.
- 68. Zeileis, A., Kleiber, C., Krämer, W., Hornik, K., 2003. Testing and dating of structural changes in practice. Comput. Stat. Data An. 44 (1-2), 109-123. https://doi.org/10.1016/S0167-9473(03)00030-6
- 69. Zettler, M.L., Karlsson, A., Kontula, T., Gruszka, P., Laine, A.O., Herkül, K., Schiele, K.S., Maximov, A., Haldin, J., 2014. Biodiversity gradient in the Baltic Sea: a comprehensive inventory of macrozoobenthos data. Helgol. Mar. Res. 68, 49-57. https://doi.org/10.1007/s10152-013-0368-x
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-936173bf-50c1-4259-83cf-322b01875637