PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Regime shift in sea-ice characteristics and impact on the spring bloom in the Baltic Sea

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We evaluated the temporal and spatial trends of the hydrological (temperature and sea ice) and biochemical (chlorophyll-a concentration) characteristics in springtime in the Baltic Sea. Both are strongly affected by climate change, resulting in a decrease in the duration of sea-ice melting in the previous decade. A new regime of sea ice began in 2008 and in all basins of the Baltic Sea, a rapid warming during spring could be detected. Using satellite data, the temporal and spatial variations in spring bloom were analysed during severe and warmer winters. Using a coupled hydrodynamic-biogeochemical model, we tested the response of spring bloom to the changing ice conditions. The results of the modelling indicated that the presence of ice significantly influences the predicted chlorophyll-a concentration values in the Baltic Sea. Therefore, it is necessary that any coupled model system has a realistic ice model to ensure the best simulation results for the lower trophic food web as well.
Czasopismo
Rocznik
Strony
312--326
Opis fizyczny
Bibliogr. 69 poz., map., tab., rys., wykr.
Twórcy
autor
  • European Commission, Joint Research Centre, Ispra, Varese, Italy
  • Leibniz-Institute for Baltic Sea Research Warnemünde, Rostock, Germany
  • Hereditas, Tartu, Estonia
  • European Commission, Joint Research Centre, Ispra, Varese, Italy
Bibliografia
  • 1. Abalansa, S., El Mahrad, B., Vondolia, G.K., Icely, J., Newton, A., 2020. The marine plastic litter issue: a social-economic analysis. Sustainability 12 (20), 8677. https://doi.org/10.3390/su12208677
  • 2. BACC II Author Team, 2015. Second Assessment of Climate Change for the Baltic Sea Basin. Springer International Publ., 146 pp.
  • 3. Bai, J., 1994. Least squares estimation of a shift in linear processes. J. Time Ser. Anal. 15 (5), 453-472. https://doi.org/10.1111/j.1467-9892.1994.tb00204.x
  • 4. Bai, J., 1997. Estimation of a change point in multiple regression models. Rev. Econ. Stat. 79 (4), 551-563.
  • 5. Bai, J., Perron, P., 1998. Estimating and testing linear models with multiple structural changes. Econometrica 66 (1), 47-78. https://doi.org/10.2307/2998540
  • 6. Bai, J., Perron, P., 2003. Computation and analysis of multiple structural change models. J. Appl. Econ. 18 (1), 1-22. https://doi.org/10.1002/jae.659
  • 7. Brierley, A.S., Kingsford, M.J., 2009. Impacts of climate change on marine organisms and ecosystems. Curr. Biol. 19 (14), R602—R614. https://doi.org/10.1016/j.cub.2009.05.046
  • 8. Burchard, H., 1999. Burchard, Hans. Recalculation of surface slopes as forcing for numerical water column models of tidal flow. Applied Mathematical Modelling 23 (10), 737-755.
  • 9. Burchard, H., Bolding, K., 2002. GETM, a general estuarine transport model. Technical report, European Commsission.
  • 10. Chiswell, S.M., Calil, P.H., Boyd, P.W., 2015. Spring blooms and annual cycles of phytoplankton: a unified perspective. J. Plankton Res. 37 (3). https://doi.org/10.1093/plankt/fbv021
  • 11. Eilola, K., Mårtensson, S., Meier, H.E.M., 2013. Modeling the impact of reduced sea ice cover in future climate on the Baltic Sea biogeochemistry. Geophys. Res. Lett. 40 (1), 149-154. https://doi.org/10.1029/2012GL054375
  • 12. Friedland, R., Hiller, A., Janßen, H., 2013. Melting Sea Ice in the Baltic Sea — changes and possible effects. Coast. Mar. 22 (1), 9.
  • 13. Friedland, R., Neumann, T., Schernewski, G., 2012. Climate change and the Baltic Sea action plan: model simulations on the future of the western Baltic Sea. J. Mar. Syst. 105, 175-186. https://doi.org/10.1016/j.jmarsys.2012.08.002
  • 14. Gemmell, B.J., Oh, G., Buskey, E.J., Villareal, T.A., 2016. Dynamic sinking behaviour in marine phytoplankton: rapid changes in buoyancy may aid in nutrient uptake. Proc. Royal Soc. B Biol. Sci. 283 (1840). https://doi.org/10.1098/rspb.2016.1126
  • 15. Griffiths, J. R.Griffiths, J. R., Kadin, M., Nascimento, F. J. A., Tamelander, T., Törnroos, A., Bonaglia, S., et al., 2017. The importance of benthic—pelagic coupling for marine ecosystem func-tioning in a changing world. Glob. Change Biol. 23, 2179-2196. https://doi.org/10.1111/gcb.13642
  • 16. Gröger, J.P., Hinrichsen, H.H., Polte, P., 2014. Broad-scale climate influences on spring-spawning herring (Clupea harengus, L.) recruitment in the Western Baltic Sea. PLoS One 9 (2), e87525. https://doi.org/10.1371/journal.pone.0087525
  • 17. Hagen, E., Feistel, R., 2005. Climatic turning points and regime shifts in the Baltic Sea region: the Baltic winter index (WIBIX) 1659—2002. Boreal Environ. Res. 10 (3), 211-224.
  • 18. Haas C, Christian, 2004. Late-summer sea ice thickness variability in the Arctic Transpolar Drift 1991—2001 derived from ground-based electromagnetic sounding. Geophys. Res. Lett. 31 (9). https://doi.org/10.1029/2003GL019394
  • 19. HELCOM, 2018. Inputs of hazardous substances to the Baltic Sea. In: Baltic Sea Environment Proceedings No. 162.
  • 20. Hersbach, H., et al., 2020. The ERA5 global reanalysis. Q. J. Roy. Meteor. Soc. 146, 1999-2049. https://doi.org/10.1002/qj.3803
  • 21. Hjerne, O., Hajdu, S., Larsson, U., Downing, A., Winder, M., 2019. Climate driven changes in timing, composition and size of the Baltic Sea phytoplankton spring bloom. Front. Mar. Sci. 6, 482. https://doi.org/10.3389/fmars.2019.00482
  • 22. Ivanova, M.B., 1985. Productivity of Planktonic Crustaceans in Freshwater Water Bodies. Nauka 220.
  • 23. Jørgensen, S.E., 1994. Models as instruments for combination of ecological theory and environmental practice. Ecol. Modell. 75-76, 5-20. https://doi.org/10.1016/0304-3800(94)90003-5
  • 24. Jørgensen H, Hanne B. Hede, et al.Michael Møller Hansen, Volker Loeschcke, 2005. Spring-spawning herring (Clupea harengus L.) in the southwestern Baltic Sea: do they form genetically distinct spawning waves? ICES J. Mar. Sci. 62 (6). https://doi.org/10.1016/j.icesjms.2005.04.007
  • 25. Kahru, M., Elmgren, R., Savchuk, O.P., 2016. Changing seasonality of the Baltic Sea. Biogeosci. Discuss. 13 (4), 1009-1018. https://doi.org/10.5194/bg-13-1009-2016
  • 26. Käse, L., Geuer, J.K., 2018. Phytoplankton responses to marine climate change—an introduction. In: Jungblut, S., Liebich, V., Bode, M. (Eds.), YOUMARES 8—Oceans Across Boundaries: Learning from Each Other. Springer, Cham, 55-71. https://doi.org/10.1007/978-3-319-93284-2_5
  • 27. Keevallik, S., 2011. Shifts in meteorological regime of the late winter and early spring in Estonia during recent decades. Theor. Appl. Climatol. 105 (1-2), 209-215. https://doi.org/10.1007/s00704-010-0356-x
  • 28. Klais, R., Norros, V., Lehtinen, S., Tamminen, T., Olli, K., 2017a. Community assembly and drivers of phytoplankton functional structure. Funct. Ecol. 31 (3), 760-767. https://doi.org/10.1111/1365-2435.12784
  • 29. Klais, R., Otto, S.A., Teder, M., Simm, M., Ojaveer, H., 2017b. Winter—spring climate effects on small-sized copepods in the coastal Baltic Sea. ICES J. Mar. Sci. 74 (7), 1855-1864. https://doi.org/10.1093/icesjms/fsx036
  • 30. Klais, R., Tamminen, T., Kremp, A., Spilling, K., An, B.W., Hajdu, S.,Olli, K., 2013. Spring phytoplankton communities shaped by interannual weather variability and dispersal limitation: mechanisms of climate change effects on key coastal primary producers. Limnol. Oceanogr. 58 (2), 753-762. https://doi.org/10.4319/lo.2013.58.2.0753
  • 31. Lei, R., Leppäranta, M., Erm, A., Jaatinen, E., Pärn, O., 2011. Field investigations of apparent optical properties of ice cover in Finnish and Estonian lakes in winter 2009. Est. J. Earth Sci. 60(50). https://doi.org/10.3176/earth.2011.1.05
  • 32. Leppäranta, M., Myrberg, K., 2009. Physical Oceanography of the Baltic Sea. Springer Science & Business Media.
  • 33. Lilover, M.-J., Pavelson, J., Kõuts, T., Lepparanta, M., 2018. Characteristics of high-resolution sea ice dynamics in the Gulf of Finland, Baltic Sea. Boreal Env. Res. 23, 175-191.
  • 34. Lipsewers, T., 2020. Spring bloom dynamics in the Baltic Sea: from the environment to macro-elements and microbial interactions. Dissertationes Schola Doctoralis Scientiae Circumiectalis, Alimentariae, Biologicae. Universitatis Helsinkiensis.
  • 35. Macias Moy, D., Friedland, R., Stips, A., Miladinova, S., Parn, O., Garcia-Gorriz, E., Melin, F., 2020. Applying the Marine Modelling Framework to Estimate Primary Production in EU Marine Waters, EUR 30546EN. Publications Office of the European Union, Luxembourg.
  • 36. Mantua, N.J., 2004. Methods for detecting regime shifts in large marine ecosystems: a review with approaches applied to North Pacific data. Progr. Oceanogr. 60 (2-4), 165-182. https://doi.org/10.1016/j.pocean.2004.02.016
  • 37. Meier, H.E.M., Döscher, R., Coward AC., Nycander J., Döös K., 1999. RCO—Rossby Centre regional Ocean climate model: modelde-scription (version 1.0) and first results from the hindcast period 1992/93. Reports Oceanography 26, 102.
  • 38. Meier, H.E.M., Edman, M.K., Eilola, K.J., Placke, M., Neumann, T., Andersson, H.C., Brunnabend, S.E., Dieterich, C., Frauen, C., Friedland, R., Gröger, M., Gustafsson, B.G., Gustafsson, E., Isaev, A., Kniebusch, M., Kuznetsov, I., Müller-Karulis, B., Omstedt, A., Ryabchenko, V., Saraiva, S., Savchuk, O.P., 2018. Assessment of eutrophication abatement scenarios for the Baltic Sea by multi-model ensemble simulations. Front. Mar. Sci. 5, 440. https://doi.org/10.3389/fmars.2018.00440
  • 39. Murray, C.J., Müller-Karulis, B., Carstensen, J., Conley, D.J., Gustafsson, B.G., Andersen, J.H., 2019. Past, present and future eutrophication status of the Baltic Sea. Front. Mar. Sci. 6, 2. https://doi.org/10.3389/fmars.2019.00002
  • 40. Neumann, T., 2000. Towards a 3D-ecosystem model of the Baltic Sea. Journal of Marine Systems 25, 405-419. https://doi.org/10.1016/S0924-7963(00)00030-0
  • 41. Neumann, T., 2010. Climate-change effects on the Baltic Sea ecosystem: a model study. J. Mar. Syst. 81 (3), 213-224. https://doi.org/10.1016/j.jmarsys.2009.12.001
  • 42. Neumann, T., Eilola, K., Gustafsson, B., Müller-Karulis, B., Kuznetsov, I., Markus Meier, H.E., Savchuk, O.P., 2012. Extremes of temperature, oxygen and blooms in the Baltic Sea in a changing climate. Ambio 41 (6), 574-585.
  • 43. Neumann, T., Friedland, R., 2011. Climate change impacts on the Baltic Sea. In: Schernewski, G., Hofstede, J., Neumann, T. (Eds.), Global Change and Baltic Coastal Zones. Springer Science Business Media (Coastal Research Library), Dordrecht, 23-32.
  • 44. Neumann, T., Schernewski, G., 2008. Eutrophication in the Baltic Sea and shifts in nitrogen fixation analysed with a 3D ecosystem model. J. Mar. Syst. 74 (1-2), 592-602.
  • 45. Neumann, T., Siegel, H., Moros, M., Gerth, M., Kniebusch, M., Heydebreck, D., 2020. Ventilation of the northern Baltic Sea. Ocean Sci. 16, 767-780. https://doi.org/10.5194/os-16-767-2020
  • 46. Norbäck Ivarsson, L., Andrén, T., Moros, M., Andersen, T.J., Lönn, M., Andrén, E., 2019. Baltic sea coastal eutrophication in a thousand-year perspective. Front. Environ. Sci. 7, 88. https://doi.org/10.3389/fenvs.2019.00088
  • 47. Passow, U., 1991. Species-specific sedimentation and sinking velocities of diatoms. Mar. Biol. 108 (3), 449-455.
  • 48. Pärn, O., Friedland, R., Garcia Gorriz, E., Stips, A., 2020. Report on the biogeochemical model setup for the Baltic Sea and its applications. Luxembourg: EUR, 30252. Luxembourg: EUR, 30252 https://doi.org/10.2760/672255
  • 49. Pärn, O., Lessin, G., Stips, A., 2021. Effects of sea ice and wind speed on Phytoplankton spring bloom in Central and Southern Baltic Sea. PLoS ONE 16 (3), e0242637. https://doi.org/10.1371/journal.pone.0242637
  • 50. Pemberton, P., Löptien, U., Hordoir, R., Höglund, A., Schimanke, S., Axell, L., Haapala, J., 2017. Sea-ice evaluation of NEMO-Nordic 1.0: a NEMO-LIM3. 6-based ocean-sea-ice model setup for the North Sea and Baltic Sea. Geosci. Model Dev. 10 (8), 3105-3123. https://doi.org/10.5194/gmd-10-3105-2017
  • 51. Pitarch, J., Volpe, G., Colella, S., Krasemann, H., Santoleri, R., 2016. Remote sensing of chlorophyll in the Baltic Sea at basin scale from 1997 to 2012 using merged multi-sensor data. Ocean Sci. 12 (2), 379-389. https://doi.org/10.5194/os-12-379-2016
  • 52. Rjazin, J., Alari, V., Pärn, O., 2017. Classifying the ice seasons 1982-2016 using the weighted ice days number as a new winter severity characteristic. EUREKA: Phys. Eng. 5, 49-56.
  • 53. Rjazin, J.,Hordoir, R., Pärn, O., 2019. Evaluation of the nemo-nordic model by comparing the sea-ice concentration values in the Baltic Sea. J. Ocean Tech. 14 (2).
  • 54. Rjazin, J., Parn, O., 2020. Determining the regime shift of the Baltic Sea ice seasons during 1982—2016. NAŠE MORE: znanstveni časopis za more i pomorstvo 67 (1), 53-59. https://doi.org/10.17818/NM/2020/1.8
  • 55. Rodionov, S.N., 2004. A sequential algorithm for testing climate regime shifts. Geophys. Res. Lett. 31 (9), L09204. https://doi.org/10.1029/2004GL019448
  • 56. Schmelzer, N., Holfort, J., Tegtmeier, J., Düskau, T., 2014. Ice Winters 2009/2010 to 2013/2014 on the German North and Baltic Sea Coasts. Bundesamtes für Seeschifffahrt und Hydrographie Nr. 53/2014.
  • 57. Selin, H., VanDeveer, S.D., 2004. Baltic Sea hazardous substances management: results and challenges. Ambio 33 (3), 153-160.
  • 58. Spilling, K., Olli, K., Lehtoranta, J., Kremp, A., Tedesco, L., Tamelander, T., Klais, R., Peltonen, H., Tamminen, T., 2018. Shifting diatom-dinoflagellate dominance during spring bloom in the Baltic Sea and its potential effects on biogeochemical cycling. Front. Mar. Sci. 5, 327. https://doi.org/10.3389/fmars.2018.00327
  • 59. Stips, A., Bolding, K., Pohlmann, T., Burchard, H., 2004. Simulating the temporal and spatial dynamics of the North Sea using the new model GETM (general estuarine transport model). Ocean Dynam. 54, 266-283. https://doi.org/10.1007/s10236-003-0077-0
  • 60. Stips, A., Lilover, M., 2010. Yet another assessment of climate change in the Baltic Sea area: Breakpoints in climate time series. 2010 IEEE/OES Baltic International Symposium (BALTIC), 1-9.
  • 61. Tedesco, L., Piroddi, C., Kämäri, M., Lynam, C., 2016. Capabilities of Baltic Sea models to assess environmental status for marine biodiversity. Marine Policy 70, 1-12. https://doi.org/10.1016/j.marpol.2016.04.021
  • 62. Umlauf, L., Burchard, H., 2005. Second-order turbulence closure models for geophysical boundary layers: a review of recent work. Cont. Shelf Res. 25 (7-8), 795-827. https://doi.org/10.1016/j.csr.2004.08.004
  • 63. Vihma, T., Haapala, J., Matthäus, W., 2009. Geophysics of sea ice in the Baltic Sea: a review. Progr. Oceanogr. 80 (34), 129-148. https://doi.org/10.1016/j.pocean.2009.02.002
  • 64. Von Schuckmann, K., Le Traon, P.-Y., Smith, N., et al., 2018. Copernicus Marine Service Ocean State Report. J. Operational Oceanogr. 11 (Sup. 1), S1-S142. https://doi.org/10.1080/1755876X.2018.1489208
  • 65. Wasmund, N., Nausch, G., Matthäus, W., 1998. Phytoplankton spring blooms in the southern Baltic Sea — spatio-temporal development and long-term trends. J. Plankt. Res. 20 (6), 1099-1117. https://doi.org/10.1093/plankt/20.6.1099
  • 66. Winder, M., Schindler, D., 2004. Climate change uncouples trophic interactions in an aquatic ecosystem. Ecology 85, 2100-2106. https://doi.org/10.1890/04-0151
  • 67. Winder, M., Sommer, U., 2012. Phytoplankton response to a changing climate. Hydrobiologia 698 (1), 5-16.
  • 68. Zeileis, A., Kleiber, C., Krämer, W., Hornik, K., 2003. Testing and dating of structural changes in practice. Comput. Stat. Data An. 44 (1-2), 109-123. https://doi.org/10.1016/S0167-9473(03)00030-6
  • 69. Zettler, M.L., Karlsson, A., Kontula, T., Gruszka, P., Laine, A.O., Herkül, K., Schiele, K.S., Maximov, A., Haldin, J., 2014. Biodiversity gradient in the Baltic Sea: a comprehensive inventory of macrozoobenthos data. Helgol. Mar. Res. 68, 49-57. https://doi.org/10.1007/s10152-013-0368-x
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-936173bf-50c1-4259-83cf-322b01875637
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.