Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The rapid development of new radiotherapy technologies, such as intensity modulated radiotherapy (IMRT) or tomotherapy, has resulted in the capacity to deliver a more homogenous dose in the target. However, the higher doses associated with these techniques are a reason for concern because they may increase the dose outside the target. In the present study, we compared 3DCRT, IMRT and tomotherapy to assess the doses to organs at risk (OARs) resulting from photon beam irradiation and scattered neutrons. Material and methods. The doses to OARs outside the target were measured in an anthropomorphic Alderson phantom using thermoluminescence detectors (TLD 100) 6Li (7.5%) and 7Li (92.5%). The neutron fluence rate [cm–2·s–1] at chosen points inside the phantom was measured with gold foils (0.5 cm diameter, mean surface density of 0.108 g/cm3). Results. The doses [Gy] delivered to the OARs for 3DCRT, IMRT and tomotherapy respectively, were as follows: thyroid gland (0.62 ± 0.001 vs. 2.88 ± 0.004 vs. 0.58 ± 0.003); lung (0.99 ± 0.003 vs. 4.78 ± 0.006 vs. 0.67 ± 0.003); bladder (80.61 ± 0.054 vs. 53.75 ± 0.070 vs. 34.71 ± 0.059); and testes (4.38 ± 0.017 vs. 6.48 ± 0.013 vs. 4.39 ± 0.020). The neutron dose from 20 MV X-ray beam accounted for 0.5% of the therapeutic dose prescribed in the PTV. The further from the field edge the higher the contribution of this secondary radiation dose (from 8% to ~45%). Conclusion. For tomotherapy, all OARs outside the therapeutic field are well-spared. In contrast, IMRT achieved better sparing than 3DCRT only in the bladder. The photoneutron dose from the use of high-energy X-ray beam constituted a notable portion (0.5%) of the therapeutic dose prescribed to the PTV.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
29--35
Opis fizyczny
Bibliogr. 31 poz., rys.
Twórcy
autor
- Department of Medical Physics, Greater Poland Cancer Centre, 15 Garbary Str., 61-866 Poznan, Poland, Tel.: +48 61 885 0552, +48 61 885 0550
autor
- Department of Radiotherapy I, Greater Poland Cancer Centre, 15 Garbary Str., 61-866 Poznan, Poland
autor
- Department of Medical Physics, Greater Poland Cancer Centre, 15 Garbary Str., 61-866 Poznan, Poland and Department of Electroradiology, University of Medical Sciences, Poznan, Poland
autor
- Department of Medical Physics, Greater Poland Cancer Centre, 15 Garbary Str., 61-866 Poznan, Poland, Tel.: +48 61 885 0552, +48 61 885 0550
autor
- Department of Medical Physics, Greater Poland Cancer Centre, 15 Garbary Str., 61-866 Poznan, Poland, Tel.: +48 61 885 0552, +48 61 885 0550
autor
- Department of Medical Physics, Greater Poland Cancer Centre, 15 Garbary Str., 61-866 Poznan, Poland, Tel.: +48 61 885 0552, +48 61 885 0550
autor
- Department of Medical Physics, Greater Poland Cancer Centre, 15 Garbary Str., 61-866 Poznan, Poland and Department of Electroradiology, University of Medical Sciences, Poznan, Poland
autor
- Department of Medical Physics, University of Silesia, 4 Uniwersytecka Str., 40-007 Katowice, Poland
Bibliografia
- 1. Francois, P., Beurtheret, C., & Dutreix, A. (1988). Calculation of the dose delivered to organs outside the radiation beams. Med. Phys., 15(6), 879–883.
- 2. Howell, R. M., Scarboro, S. B., Kry, S. F., & Yaldo, D. Z. (2010). Accuracy of out-of-fi eld dose calculations by a commercial treatment planning system. Phys. Med. Biol., 55(23), 6999–7008.
- 3. Sheikh-Bagheri, D., & Rogers, D. W. O. (2002).Monte Carlo calculation of nine megavoltage photon beam spectra using the BEAM code. Med. Phys., 29, 391–402.
- 4. Schulte, R. W., Rittmann, K. L., Meinass, H. J., & Rennicke, P. (1996). Radiation dose in critical organs due to non-coplanar irradiation of the hypophysis. Strahlenther. Onkol., 172(9), 501–506.
- 5. ICRP. (1991). 1990 Recommendations of the International Commission on Radiological Protection. Ann. ICRP, 21(1/3).
- 6. Kaderka, R., Schardt, D., Durante, M., Berger, T., Ramm, U., Licher, J., & La Tessa, C. (2012). Out-offield dose measurements in a water phantom using different radiotherapy modalities. Phys. Med. Biol., 57, 5059–5074.
- 7. Kase, K. R., Syensson, G. K., Wolbarst, A. B., & Marks, M. A. (1983). Measurements of dose from secondary radiation outside a treatment field. Int. J. Radiat. Oncol. Biol. Phys., 9(8), 1177–1183.
- 8. Kry, S. F., Salehpour, M., Followill, D. S., Stovall, M., Kuban, D. A., White, R. A., & Rosen, I. I. (2005). Outof-field photon and neutron dose equivalents from step-and-shoot intensity-modulated radiation therapy. Int. J. Radiat. Oncol. Biol. Phys., 62(4), 1204–1216.
- 9. Peszynska-Piorun, M., Malicki, J., & Golusinski, W. (2012). Doses in organs at risk during head and neck radiotherapy using IMRT and 3D-CRT. Radiol. Oncol., 46(4), 328–336.
- 10. Van den Heuvel, F., Defraene, G., Crijns, W., & Bogaerts, R. (2012). Out-of-field contributions for IMRT and volumetric modulated arc therapy measured using gafchromic films and compared to calculations using a superposition/convolution based treatment planning system. Radiother. Oncol., 105(1), 127–132.
- 11. Skórska, M., & Piotrowski, T. (2013). Optimization of treatment planning parameters used in tomotherapy for prostate cancer patients. Phys. Med., 29(3), 273–285.
- 12. ICRU. (2010). Prescribing, recording, and reporting intensity-modulated photon-beam therapy (IMRT). Washington: International Commission on Radiation Units and Measurements. (ICRU Report 83).
- 13. Mackie, T. R., Holmes, T., Swerdloff, S., Reckwerdt, P., Deasy, J. O., Paliwal, B., & Kinsella, T. (1993). Tomotherapy: a new concept for the delivery of dynamic conformal radiotherapy. Med. Phys., 20, 1709–1719.
- 14. Harris, C. K., Elson, H. R., Lamba, M. A., & Foster, A. E. (1997). Comparison of effectiveness of thermoluminescent crystals LiF: Mg, Ti, and LiF: Mg, Cu, P for clinical dosimetry. Med. Phys., 24(9), 1527–1529.
- 15. Nath, R., Boyer, A. L., La Riviere, P., McCall, R., & Price, K. (1986). Neutron measurements around high energy X-ray radiotherapy machines. New York: American Association of Physists in Medicine. (AAPM Report No. 19).
- 16. Facure, A., Falcão, R. C., Silva, A. X., Crispim, V. R., & Vitorelli, J. C. (2005). A study of neutron spectra from medical linear accelerators. Appl. Radiat. Isot., 62, 69–72.
- 17. Kralik, M., & Turek, K. (2004). Characterisation of neutron fields around high-energy X-ray radiotherapy machines. Radiat. Prot. Dosim., 110(1/4), 503–507.
- 18. Vega-Carrillo, H. R., Ortiz-Hernandez, A., Hernandez-Davila, V. M., Hernández-Almaraz, B., & Rivera Montalvo, T. (2010). H*(10) and neutron spectra around linacs. J. Radioanal. Nucl. Chem., 283, 537–540.
- 19. Harrison, R. M., Wilkinson, M., Shemilt, A., Rawlings, D. J., Moore, M., & Lecomber, A. R. (2005). Estimating second cancer risk following radiotherapy: organ doses from prostate radiotherapy and concomitant exposures. Biomed. Tech., 50(Suppl. 1, Pt 1), 768–769.
- 20. Kry, S., Salehpour, M., Followill, D., Stovall, M., Kuban, D., White, R., & Rosen, I. I. (2005). The calculated risk of fatal secondary malignancies from intensity-modulated radiation therapy. Int. J. Radiat. Oncol., 62(4), 1195–1203.
- 21. Stovall, M., Smith, S. A., Langholz, B. M., Boice, J. D., Shore, R. E., Andersson, M., Buchholz, T. A., Capanu, M., Bernstein, L., Lynch, C. F., Malone, K. E., Anton-Culver, H., Haile, R. W., Rosenstein, B. S., Reiner, A. S., Thomas, D. C., Bernstein, J. L., & WECARE Study Collaborative Group. (2008). Dose to the contra-lateral breast from radiotherapy and risk of second primary breast cancer in the WECARE study. Int. J. Radiat. Oncol., Biol. Phys., 72(4), 1021–1030.
- 22. Al-Ghamdi, H., Fazal-ur-Rehman, Al-Jarallah, M. I., & Maalej, N. (2008). Photoneutron intensity with field size around radiotherapy linear accelerator 18-MeV X-ray beam. Radiat. Meas., 43, S495–S499.
- 23. Chibani, O., & Ma, Ch. -M. Ch. (2003). Photonuclear dose calculations for high-energy photon beams from Siemens and Varian linacs. Med. Phys., 30(8), 1990–2000.
- 24. D’Errico, F., Nath, R., Tana, L., Curzio, G., & Alberts, W. G. (1998). In-phantom dosimetry and spectrometry of photoneutrons from an 18 MV linear accelerator. Med. Phys., 25(9), 1717–1724.
- 25. Hall, E. J., & Wuu, C. (2003). Radiation-induced second cancers: the impact of 3D-CRT and IMRT. Int. J. Radiat. Oncol. Biol. Phys., 56, 83–88.
- 26. Hernández, T. G., González, A. V., Peidro, J. P., Ferrando, J. V. R., González, L. B., Cabañero, D. G., & Torrecill, J. L. (2013). Radiobiological comparison of two radiotherapy treatment techniques for high-risk prostate cancer. Rep. Pract. Oncol. Radiother., 18(5), 265–271.
- 27. Howell, R., Hertel, N. E., Wang, Z., Hutchinson, J., & Fullerton, G. D. (2006). Calculation of effective dose from measurements of secondary neutron spectra and scattered photon dose from dynamic MLC IMRT for 6 MV, 15 MV and 18 MV beam energies. Med. Phys., 33(2), 360–368.
- 28. Kase, K. R., Mao, X. S., Nelson, W. R., Liu, J. C., Kleck, J. H., & Elsalim, M. (1998). Neutron fluence and energy spectra around the Varian Clinac 2100C/2300C medical accelerator. Health Phys., 74, 38–47.
- 29. Kourinou, K. M., Mazonakis, M., Lyraraki, E., Stratakis, J., & Damilakis, J. (2012). Scattered dose to radiosensitive organs and associated risk for cancer development from head and neck radiotherapy in pediatric patients. Phys. Medica, 29(6), 650–655.
- 30. Lambrecht, M., Nevens, D., & Nuyts, S. (2013). Intensity-modulated radiotherapy vs. parotid-sparing 3D conformal radiotherapy. Strahlenther. Onkol., 189(3), 223–229.
- 31. Leszczyński, W., Ślosarek, K., & Szlag, M. (2012). Comparison of dose distribution in IMRT and Rapid Arc technique in prostate radiotherapy. Rep. Pract. Oncol. Radiother., 17(6), 347–351.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9360c105-821c-46eb-ad0d-0e3101057310