PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Flexible design of progressive addition lenses for effective sizing of viewing zones using ellipse, hyperbola, parabola, and circle parametric equations

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study addresses the critical issue of optical power distribution in progressive addition lenses (PALs). We introduce a novel approach by defining the addition vertex power curve along the meridian line as a trigonometric function. Four distinct conic equations (ellipse, hyperbola, parabola, and circle) are proposed to extend power distribution evenly across the lens surface. An offset parameter is introduced for controlling viewing area widths. The elliptical equations offer the best results for larger fixed focus areas, while circular equations excel for smaller areas. This personalized method caters to individual patient needs, providing optimized PAL designs.
Czasopismo
Rocznik
Strony
19--31
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
autor
  • School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jun Gong Road, Shanghai 200093, China
  • School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jun Gong Road, Shanghai 200093, China
autor
  • School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jun Gong Road, Shanghai 200093, China
autor
  • School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jun Gong Road, Shanghai 200093, China
autor
  • School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
autor
  • School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
autor
  • School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jun Gong Road, Shanghai 200093, China
autor
  • Engineering Research Center of Optic Instrument and System, Ministry of Education, University of Shanghai for Science and Technology, Shanghai 200093, China
  • School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
  • Engineering Research Center of Optic Instrument and System, Ministry of Education, University of Shanghai for Science and Technology, Shanghai 200093, China
  • School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
Bibliografia
  • [1] STOKES J., SHIRNESHAN E., GRAHAM C.A., PAULICH M., JOHNSON N., Exploring the experience of living with and managing presbyopia, Optometry and Vision Science 99(8), 2022: 635-644. https://doi.org/10.1097/opx.0000000000001913
  • [2] KATZ J.A., KARPECKI P.M., DORCA A., CHIVA-RAZAVI S., FLOYD H., BARNES E., WUTTKE M., DONNENFELD E., Presbyopia – A review of current treatment options and emerging therapies, Clinical Ophthalmology 15, 2021: 2167-2178. https://doi.org/10.2147/opth.s259011
  • [3] ELMADINA A.M., Progressive addition lenses wearers’ visual satisfaction among Saudi population, African Vision and Eye Health 81(1), 2022: a733. https://doi.org/10.4102/aveh.v81i1.733
  • [4] CHAMORRO E., CLEVA J.M., CONCEPCIÓN P., SUBERO M.S., ALONSO J., Lens design techniques to improve satisfaction in free-form progressive addition lens users, JOJ Ophthalmology 6(3), 2018: 555688. https://doi.org/10.19080/JOJO.2018.06.555688
  • [5] ROLLAND J.P., DAVIES M.A., SULESKI T.J., EVANS C., BAUER A., LAMBROPOULOS J.C., FALAGGIS K., Freeform optics for imaging, Optica 8(2), 2021: 161-176. https://doi.org/10.1364/OPTICA.413762
  • [6] JALIE M., Modern spectacle lens design, Clinical and Experimental Optometry 103(1), 2020: 3-10. https://doi.org/10.1111/cxo.12930
  • [7] LEGRAS R., VINCENT M., MARIN G., Does visual acuity predict visual preference in progressive addition lenses?, Journal of Optometry 16(2), 2023: 91-99. https://doi.org/10.1016/j.optom.2022.04.003
  • [8] FERRER-ALTABÁS S., PICAZO-BUENO J.A., GRANERO-MONTAGUD L., MICÓ V., Shadowfocimetry: Adapting the holographic principle to a manual focimeter for visualization/marking of permanent engravings in progressive addition lenses, Optics Letters 47(9), 2022: 2298-2301. https://doi.org/ 10.1364/OL.454962
  • [9] WINTHROP J.T., Progressive Addition Spectacle Lens, United States Patent US4861153, 1989.
  • [10] BAUDART T, Multifocal Ophthalmic Lens, United States Patent US6102544, 2000.
  • [11] CONCEPCIÓN P., CLEVA J., CHAMORRO E., CRESPO D., GARCÍA M., GAGO C., SUBERO M., ALONSO J., Clinical evaluation of free-form PALs: Customized vs standard designs, European Academy of Optometry and Optics Annual Conference, Barcelona, Spain, 2017: 34-36.
  • [12] LOOS J., GREINER G., SEIDEL H.P., A variational approach to progressive lens design, Computer-Aided Design 30(8), 1998: 595-602. https://doi.org/10.1016/S0010-4485(97)00102-4
  • [13] WANG J., SANTOSA F., A numerical method for progressive lens design, Mathematical Models and Methods in Applied Sciences 14(4) 2004: 619-640. https://doi.org/10.1142/S0218202504003386
  • [14] TAZEROUALTI M., Designing a progressive lens, [In] Curves and Surfaces in Geometric Design, AK Peters, 1994: 467-474.
  • [15] MENDIOLA-ANDA G., Design of Surfaces under Physical Constraints and its Application to the Design of Ophthalmic Lenses, Ph.D. Dissertation, School of Computing Sciences, University of East Anglia, Norwich, England, 2006.
  • [16] BARBERO S., DEL MAR GONZÁLEZ M., Admissible surfaces in progressive addition lenses, Optics Letters 45(20), 2020: 5656-5659. https://doi.org/10.1364/OL.401927
  • [17] TANG Y.H., WU Q.Y., CHEN X.Y., ZHANG H., WU Y.L., Optimization design of the meridian line of progressive addition lenses based on genetic algorithm, Acta Optica Sinica 34(9), 2014: 922005. https://doi.org/10.3788/aos201434.0922005
  • [18] LU H.Y., BAI D.F., MA J.W., Design for initial vector height model of progressive addition lenses surface, Laser and Optoelectronics Progress 54(3), 2017: 32201. https://doi.org/10.3788/lop54.032201
  • [19] ZHANG H.X., WU Q.Y., TANG Y.H., LV X.Z., CHEN X.Y., HOU Y.W., Bi-directional fitting design of meridian lines for progressive addition lenses, Infrared and Laser Engineering 51(6), 2022: 20210630.
  • [20] GUGGENHEIMER H.W., Differential Geometry, Courier Corporation, 2012
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-935bc5cb-d045-42b2-a01c-9fba11b42d5f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.