PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical Methods in Bioelectromagnetics Analysis

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Metody numeryczne w analizach bioelektromagnetycznych
Języki publikacji
EN
Abstrakty
EN
The paper is devoted to short characteristic of numerical methods using in electromagnetics investigations. Three main methods were presented: Method of Moments, Finite Element Method and Finite Difference Time Domain method. FEM and FDTD were used in computer simulations to show the interaction between the exposure system and tested object.
PL
Artykuł poświęcony jest krótkiej charakterystyce metod numerycznych wykorzystywanych w badaniach bioelektromagnetycznych. Omówiono trzy podstawowe metody: metodę momentów, metodę elementów skończonych i metoda różnic skończonych w dziedzinie czasu. Metody elementów skończonych i różnic skończonych zostały wykorzystane w symulacjach komputerowych na potrzeby wyznaczenia wzajemnego oddziaływania między układem ekspozycyjnym, a badanym obiektem.
Twórcy
autor
  • Faculty of Computer Science, Wroclaw of Information Technology, ul Wejherowska 28, 54-239 Wrocław, Poland
Bibliografia
  • L.A. Geddes, ”d’Arsonval, physician and inventor”, IEEE Engineering in Medicine and Biology Magazine, Vol. 18, No. 4, pp. 118-122, 1999.
  • L.A. Geddes, “The first experiments on electrical safety, IEEE Engineering in Medicine and Biology Magazine, Vol. 25, No. 6, pp. 92-93, 2006.
  • I. Malikova, L. Janousek, “Non-thermal effects of low-frequency electromagnetic field on biological cells”, . Proceedings of ELECTRO; 2014 May 19-20; Rajecke Teplice, Slovak Republic, pp. 509-602.
  • International Commission on Non-Ionizing Radiation Protection (ICNIRP),” ICNIRP Guidelines: Guidelines for limiting exposure to time-varying electric, magnetic and electromagnetic fields (up to 300 GHz)”, Health Physics, Vol. 74, No. 4, pp. 494-522, 1998.
  • H. Hinrikus, “Changes caused by Microwave In Human EEG of individuals”, CD Proceeding of International Conference and COST 281 Workshop on Emerging EMF-Technologies, Potential Sensitive Groups and Health; April 20-21, Graz, Austria, 2006.
  • F.S. Prato,”Non-thermal extremely low frequency magnetic field effects on opioid related behaviors: Snail to humans, mechanisms to therapy”, Bioelectromagnetics, Vol. 36, No. 5, pp. 333-348, 2015.
  • E.R. Adair, D.R. Black, “Thermoregulatory reponses to RF energy absorption”, Bioelectromagnetics, 2003, Vol. 24, No. S6, pp. S17-S38, 2003.
  • A. Paffi, L. Micaela, F. Apollonio, A. Sheppard, Q. Balzano, “In vitro exposure: Linear and non-linear thermodynamic events in Petri Dishes”, Bioelectromagnetics, Vol. 36, No. 7, pp. 527-537, 2015.
  • World Health Organization, “Environmental Health Criterias on electromagnetic Fields”, available from: http://www.who.int/peh-emf/research/health_risk_assess/en/index2.html, May 2016.
  • M.Markov., C.F. Hazlewood, “Electromagnetic Field Dosimetry for Clinical Application”, Proceedings of 5th International Workshop on Biological Effects of Electromagnetic Fields, 2008 , September 28th – October 2nd, Palermo, Italy.
  • L.I. Kheifets, “Electric and magnetic field exposure and brain cancer: A review”, Bioelectromagnetics, Vol. 22, No. S5, pp. S120-S131, 2001.
  • Scientific Committee on Emerging Newly Identified Health Risks, “Opinion on potential health effects of exposure to electromagnetic fields”, Bioelectromagnetics, Vol. 36, No. 6, pp. 480-484, 2015.
  • S. Szmigielski, E. Sobiczewska, „Naturalny rozwój zespołów chorobowych – rola czynników środowiskowych”, Proceedings of XXII autum School, 20-24 October, Zakopane, Poland (in Polish), 2008.
  • R.F. Harrington, “Field Computations by Moment Methods”, MacMillan, New York, 1968.
  • A.R. Djordjević, T.K. Sarkar, “A Theorem on the Moment Methods”, IEEE Transactions on Antennas and Propagation, Vol. 35, No. 3, pp. 353 – 355, 1987.
  • J. Yang, L. Zhou, “Iterative algorithm of wavelet moments methods based on the multi-resolution analysis characteristics of wavelet”, Proceedings of Microwave technology and Computational Electromagnetics (ICMTCE), May 22-25; Beijing, China; IEEE 2011.
  • T.K. Sarkar, A. Djordjević, E. Arvas, “On the choice of expansion and weighting function in the method of moments”, IEEE Transactions on Antennas Propagation, Vol. 33, No. 9, pp. 988-996, 1985.
  • M.J. Turner, R.W. Clough, H.C. Martin, L.P. Topp, “Stiffness and deflection analysis of complex structures”, J. Aeronautical Society, No. 23, pp. 805-823, 1956.
  • P. Silvester, “A General High-Order Finite-Element Waveguide Analysis Program”, IEEE Transactions on Microwave Theory and Techniques, Vol. 17, No. 4, pp. 204-210, 1969.
  • K.H. Huebner, E.A. Thornton, “The Finite Element Method for Engineers”, John Wiley and Sons, 1982.
  • A. Taflove, “Computational Electrodynamics: The Finite- Difference Time-Domain Method”, Artech House Antennas and Propagation Library, 1996.
  • A. Taflove, M.E. Brodwin, “Numerical Solution of Stady-State Electromagnetic Scattering Problems Using the Time-Dependet Maxwell’s Equation”, IEEE Transaction Microwave Theory and Techniques, Vol. 23, No. 4, pp. 623 – 630, 1975.
  • S-Y. Hyun, S-Y. Kim, “3-D thin-Wire FDTD Approach for Resistively Loaded Cylindrical Antennas Fed by Coaxial lines”, IEEE Transactions on Antennas and Propagation, Vol. 58, No. 12, pp. 4095-4099.
  • T. Dlugosz, “Uncertainity Analysis of Selected Sources of Errors in Bioelectromagnetic Investigations”, Bio-Medical Materials and Engineering, Vol. 24, No. 1, pp. 609-617, 2014.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-935aabcb-caf7-4eb0-814a-614fd8acaf15
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.