PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Deciphering lead and cadmium stripping peaks for porous antimony deposited electrodes

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Cadmium and lead are generally taken as model heavy metal ions in water to scale the detection limit of various electrode sensors, using electrochemical sensing techniques. These ions interact with the electrochemically deposited antimony electrodes depending on the diffusion limitations. The phenomenon acts differently for the in-situ and ex-situ deposition as well as for porous and non-porous electrodes. A method has been adopted in this study to discourage the stripping and deposition of the working ions (antimony) to understand the principle of heavy metal ion detection. X-ray photoelectron spectroscopy (XPS) technique was used to establish the interaction between the working and dissolved ions. In addition to the distinct peaks for each analyte, researchers also observed a shoulder peak. A possible reason for the presence of this peak was provided. Different electrochemical tests were performed to ascertain the theory on the basis of the experimental observations.
Wydawca
Rocznik
Strony
233--241
Opis fizyczny
Bibliogr. 39 poz., rys.
Twórcy
  • Department of Chemical and Materials Engineering, Faculty of Engineering, King AbdulAziz University, Jeddah, Saudi Arabia
Bibliografia
  • 1 Jagner D., Analyst, 107 (1275) (1982), 593.
  • 2 Wang J., Electroanal., 17 (2005), 1341.
  • 3 Zhou C.L., Lu Y., Li X.L., Luo C.N., Zhang Z., Ou J.M., Talanta, 46 (1998), 1531.
  • 4 Adeloju S.B., Young T.M., Anal. Chim. Acta, 302 1994), 225.
  • 5 Brihaye C., Gillain G., Duyckaerts G., Anal. him. Acta, 148 (1983), 51.
  • 6 Woolever C., Starkey D.E., Dewald H.D., orensic Sci. Int., 102 (1999), 45.
  • 7 Petrovic S.C., Dewald H.D., Anal. Chim. Acta, 357 1997), 33.
  • 8 Illuminati S., Annibaldi A., Truzzi C., Finale C., Scarponi G., Electrochim. Acta, 104 (2013), 148.
  • 9 Lust E., Jänes A., Lust K., Pullerits R., J. Electroanal. Chem., 431 (1997), 183.
  • 10 Lv M., Wang X., Li J., Yang X., Zhang C., Yang J., Hu H., Electrochim. Acta, 108 (2013), 412.
  • 11 Mirceski V., Sebez B., Jancovska M., Ogorevc B., Hocevar S.B., Electrochim. Acta, 105 (2013), 254.
  • 12 Renedo O.D., Martínez M.J.A., Anal. Chim. Acta, 589 (2007), 255.
  • 13 Salaün P., Gibbon-Walsh K., Berg C.M.G.V.D., Anal. Chem., 83 (2011), 3848.
  • 14 Zhu L., Xu L., Huang B., Jia N., Tan L., Yao S., Electrochim. Acta, 115 (2014), 471.
  • 15 Pan C., Li Y., Ma Y., Zhao X., Zhang Q., J. Power Sources, 196 (2011), 6228.
  • 16 Czop E., Economou A., Bobrowski A., Electrochim. Acta, 56 (2011), 2206.
  • 17 Jovanovski V., Hočevar S.B., Ogorevc B., Electroanalysis, 21 (2009), 2321.
  • 18 Tesarova E., Baldrianova L., Hocevar S.B., Svancara I., Vytra K., Ogorevc B., Electrochim. Acta, 54 (2009), 1506.
  • 19 Toghill K.E., Xiao L., Wildgoose G.G., Comp-Ton R.G., Electroanalysis, 21 (2009), 1113.
  • 20 Urbanová V., Vytřas K., Kuhn A., Electrochem. Commun., 12 (2010), 114.
  • 21 Farooqi M.O., Taimoor A.A., Al-Shahrani S., Baleanu D., Rather S.U., 4 (2015), 499.
  • 22 KIM K., SEO J., NAM J., IEEE T. Plasma Sci., 33 (2005), 813.
  • 23 Rosenblatt G.M., Birchenall C.E., J. Chem. Phys., 35 (2004), 788.
  • 24 Hamrin K., Johansson G., Gelius U., Nordling C. Siegbahn K., Phys. Scr., 1 (1970), 277.
  • 25 Clark D.T., Thomas H.R., J. Polym. Sci. Polym. Chem. Ed., 16 (1978), 791.
  • 26 Clark D.T., Kilcast D., Adams D.B., Mus-Grave W.K.R., J. Electron Spectros. Relat. Phenomena, (1975), 117.
  • 27 Wagner C.D., Handbook of x-ray photoelectron spectroscopy: a reference book of standard data for use in X-ray photoelectron spectroscopy, Perkin-Elmer Corp., 1979.
  • 28 Crist B.V., Handbook of monochromatic XPS spectra, Wiley, VCH, 2000.
  • 29 Morgab W.E., Stec W.J., Wazer J.R. V., Inorg. Chem., 12, (1972), 953.
  • 30 Beamson G., Briggs D., The scienta ESCA 300 database, in High Resolution XPS of Organic Polymers, Wiley, New York, 1992.
  • 31 Bard A.J. Faulkner L.R., Electrochemical methods: fundamentals and applications, Wiley, New York, 1980.
  • 32 Svobodova-Tesarova E., Baldrianova L., Sto-Ces M., Svancara I., Vytřas K., Hocevar S.B., Ogorevc B., Electrochim. Acta, 56 (2011), 6673.
  • 33 Nuzhny A., J. Power Sources, 158 (2006), 920.
  • 34 Li Y., Liu X., Zeng X., Liu Y., Liu X., Wei W., Luo S., Sensor. Actuat. B-Chem., 139 (2009), 604.
  • 35 Ashrafi A.M., Cerovac S., Mudrić S., Guzsvány V., Husáková L., Urbanová I., Vytřas K., Sensor. Actuat. B-Chem., 191 (2014), 320.
  • 36 Ashrafi A.M., Vytřas K., Int. J. Electrochem. Sci., 7 (2012), 68.
  • 37 Wang Z., Liu G., Zhang L., Wang H., Int. J. Electrochem. Sci, 7 (2012), 12326.
  • 38 Hočevar S.B., Švancara I., Vytřas K., Ogorevc B., Electrochim. Acta, 51 (2005), 706.
  • 39 Jovanovski V., HoČevar S.B., Ogorevc B., Electroanal., 21 (2009), 2321
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-93567a23-b7a2-4b71-a03a-752fa0f199a1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.