PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nowa metoda wizualizacji zmian objętościowych podczas przepływu silosowego na podstawie pomiarów z zastosowaniem promieniowania rentgenowskiego. Cz.1

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
New method of silos flow volume changes visualisation, based on roentgen radiation measurement. Part 1
Języki publikacji
PL
Abstrakty
PL
Proces opróżniania silosów charakteryzuje się utrudnieniami i uciążliwościami eksploatacyjnymi, zróżnicowanymi ze względu na konstrukcje silosu, rodzaj składowanego materiału sypkiego oraz sposób opróżniania. W celu rozpoznania mechanizmu płynięcia oraz wpływu parametrów zewnętrznych na zachowanie się materiału sypkiego konieczne jest monitorowanie przepływu za pomocą metod nie wprowadzających zaburzenia w strukturę materiału sypkiego. Do metod takich należy metoda promieniowania rentgenowskiego. W artykule przedstawiono wyniki pomiarów wypływu piasku bezkohezyjnego z modelu silosu z przepływem kominowym. Zastosowanie tomografii rentgenowskiej umożliwiło wizualizację przestrzenna struktury materiału podczas badań.
EN
The process in which the silos storages are being emptied involves many difficulties and operational problems, varied due to the silos structure, type of the stored material and way in which the silo is emptied. In order to recognize the flow patterns and the impact of the external factors on behaviour of the loose material, it is required to monitor the flow with the use of methods that do not change the structure of the loose material. Method based on X-rays is one of the ways to realize the above. The article presents results of measurement of non-cohesive sand, in case of the silo which features funnel flow pattern. Using the X-ray method made it possible to visualize the material structure throughout the research.
Czasopismo
Rocznik
Strony
32--39
Opis fizyczny
Bibliogr. 62 poz., il.
Twórcy
  • Wydział Inżynierii Lądowej i Środowiska, Katedra Budownictwa i Inżynierii Materiałowej, Politechnika Gdańska
Bibliografia
  • [1] Al-Raoush R. (2007), Microstructure characterization of granular materials. Physica A: Statistical mechanics and its Applications, nr 377, s.545–558
  • [2] Alshibli K.A, Sture S., Costes N.C. i in. (2000), Assessment of local deformation in sand using X-ray computed tomography. Geotechnique Test Journal, vol. 23, nr 3, s.274–299
  • [3] Baxter G.W., Behringer R.P. (1990), Pattern formation and time - dependence in flowing sand. Two Phase Flows and Waves, Springer Verlag, New York, s.1–29
  • [4] Beck M.S., Williams R.A. (1996), Process tomography: a European innovation and its applications. Measurement Science and Technology, nr 7, s.215–224
  • [5] Berthel A., Bonin T., Cadilhon S. i in. (2007), Digital radiography: description and user’s guide. DIR 2007 – International Symposium on Digital industrial Radiology and Computed Tomography, June 25–27, 2007, Lyon, France
  • [6] Birkinshaw I. (2000), The revolution in silo discharge. International Conference on Powder and Bulk Solids Handling, London, s.109–118
  • [7] Blair-Fish P., Bransby P. (1973), Flow pattern and wall stresses in a mass-flow bunker. J. Eng. Ind. Trans. ASME, B vol. 95, nr 1, s.17–26
  • [8] Buffiere J.-Y., Cloetens P., Ludwig P. i in. (2008), In situ X-ray tomography studies of microstructural evolution combined with 3D modeling. MRS Bulletin, nr 33
  • [9] Buick J.M., Pankai Y, Ooi J.Y. i in. (2004), Motion of granular particles on the wall of a model silo and the associated wall vibrations. J. Phys. D. Appl. Phys. nr 37, s.2751–2760
  • [10] Buick J.M., Chavez-Sagarnaga J., Zhing Z. i in. (2005), Investigation of silo-honking: slip-stick excitation and wall vibration. Journal of Engineering Mechanics ASCE, vol. 131, nr 3, s.299–307
  • [11] Caulkin R., Jia X., Xu C. i in. (2009), Simulations of structures in packed columns and validation by X-ray tomography. Ind. Eng. Chem. Res., nr 48, s.202–213
  • [12] Fischer H., Hoppe D., Schleicher E. i in. (2008), An ultra fast electron beam X-ray tomography scanner. Measurement Science and Technology, nr 19, doi: 10.1088/0957–0233/19/9/094002
  • [13] Fischer R., Gondret P., Rabaud M. (2005), Velocity fields of intermittent granular avalanches Proceedings of International Conference. W: Garcia-Rojo R., Herrmann H.J., McNamara S. (red.) Powders and Grains. Taylor and Francis Group, London, s.803–805
  • [14] Froystein T. (1993), Gamma-ray Flow Imaging. Proceedings of European Concerted Action on Process Tomography, Karlsruhe, Germany, s.338–341
  • [15] Grudzień K. (2012), Radiography image processing for analysis of gravitational funnel flow. Computer science in Novel applications, Lodz University of Technology, Łodź, s.137–158
  • [16] Grudzień K., Niedostatkiewicz M., Adrien J. i in. (2010a), Quantitatively description of the bulk solid concentration changes based on X-ray continuous radiation. Proceedings of the 6th World Congress on Industrial Process Tomography (WCIPT-6), Beijing, China, s.464–479
  • [17] Grudzień K., Niedostatkiewicz M., Sankowski D., Maire E. (2010b), Measurement of volume changes during gravitational flow in the silo based on the X-ray radiographs using PIV technique. Proceedings of the 6th World Congress on Industrial Process Tomography (WCIPT-6), Beijing, China, s.1376–1388
  • [18] Grudzień K., Niedostatkiewicz M., Maire E. i in. (2010c), Measurement of solid concentration changes at funnel flow silo using X-ray tomography. Proceedings of the 6th World Congress on Industrial Process Tomography (WCIPT-6), Beijing, China, s.1341–1352
  • [19] Grudzień K., Niedostatkiewicz M., Adrien J. i in. (2011a), Quantitative estimation of volume changes of granular materials during silo flow using X-ray tomography. Chemical Engineering and Processing, vol. 50, nr 1, s.59–67
  • [20] Grudzień K., Niedostatkiewicz M., Babout L., Adrien J. (2011b), Application of Particle Image Velocimetry method for monitoring the volume changes during silo flow on the basis of X–radiographs. Zeszyty Naukowe AGH, Półrocznik Automatyka, Kraków, vol. 14, nr 3, s.381–390
  • [21] Grudzień K., Niedostatkiewicz M., Adrien J. i in. (2012), Analysis of the bulk solid flow during gravitational silo emptying using X-ray and ECT tomography. Powder Technology, nr 224, s.196–208
  • [22] Gudehus G. (1986), Einige Beitrage der Bodenmechanik zur Entstehung und Auswirkung von Diskontinuitaten. Felsbau, nr 4, s.190–195
  • [23] Hammar L., Wirdelius H. (2007), Radiographic sensitivity improved by optimized high resolution X-ray detector design. DIR 2007 – International Symposium on Digital industrial Radiology and Computed Tomography, June 25–27, 2007, Lyon, France
  • [24] Hutter K., Kuerchner N. (2003), PIV for granular avalanches. Dynamical response of granular and powder materials in large and catastrophic deformations. Springer
  • [25] James R. (1965), Stress and strain fields in sand. PhD Thesis. University of Cambridge, Cambridge.
  • [26] Jaworski A., Dyakowski T. (2001): Application of electrical capacitance tomography for measurement of gas-solids flow characteristics in a pneumatic conveying system. Measurement Science and Technology, nr 12, s.1109–1119
  • [27] Kaestner A., Lehmann E., Stampanoni M. (2008), Imaging and image processing in porous media research. Advances in Water Resources, nr 31, s.1174–1187
  • [28] Kohse W.C. (2002), Experimentell Untersuchung von Scherfugenmustern in Granulaten, Diplomarbeit, Institute for Soil and Rock Mechanics. University of Karlsruhe, Karlsruhe, s.1–42
  • [29] Kuper K.E., Zarko V.E., Kvasov A.A. i in. (2010), High-resolution X-ray computed tomography of low-contrast samples with the use of synchrotron radiation. Proceedings of the 6th World Congress on Industrial Process Tomography (WCIPT-6), Beijing, China, s.451–456
  • [30] Lytvyn O.M., Pershina Y.I., Litvin O.O. i in. (2010), New method of restoration of internal structure 3D bodies by means of projections which arrive from a computer tomograph. Proceedings of the 6th World Congress on Industrial Process Tomography (WCIPT-6), Beijing, China, s.436–429
  • [31] Marashdeh Q., Warsito W., Fan L.S., Teixeira F. (2008), Dual imaging modality of granular flow based on ECT sensors. Granular Matter, nr 10, s.75–80
  • [32] Michalowski R.L. (1984), Flow of granular material through a plane hopper. Powder Technology, nr 39, s.29–40
  • [33] Michalowski R.L. (1990): Strain localization and periodic fluctuations in granular flow processes from hoppers. Geotechnique vol. 40, nr 3, s.389-403
  • [34] Mokni M. (1992), Relations entre deformations en masse et deformations localisees dans les materiaux granulaires. PhD thesis. University of Grenoble, Grenoble
  • [35] Moreno-Atanasio R., Williams R.A., Jia X. (2010), Combining X-ray microtomography with computer simulation for analysis of granular and porous materials. Particuology, vol. 8, nr 2, s.81–99
  • [36] Nakashima Y., Watanabe T. (2002), Estimate of transport properties of porous media by microfocus X-ray computed tomography and random walk simulation. Water Resources Research, nr 38, s.1272
  • [37] Niedostatkiewicz M. (2014), Badania deformacji w materiałach sypkich podczas dynamicznego przepływu w silosach. Monografia. Wydawnictwo Politechniki Gdańskiej, 145, 1-371
  • [38] Niedostatkiewicz M., Tejchman J. (2005a), Application of a Particle Image Velocimetry technique for deformation measurements of bulk solids during silo flow. Powder Handling & Processing, vol. 17, nr 4, s.216–220
  • [39] Niedostatkiewicz M., Tejchman J. (2005b), Zastosowanie nowej metody pomiaru zmian porowatości w materiałach sypkich podczas procesu płynięcia w silosach. 51 Konferencja Naukowa Komitetu Inżynierii Lądowej i Wodnej PAN i Komitetu Nauki PZITB, Gdańsk–Krynica, IV, s.49–56
  • [40] Niedostatkiewicz M., Tejchman J. (2007), Investigations of porosity changes during granular silo flow using Electrical Capacitance Tomography (ECT) and Particle Image Velocimetry (PIV). Particle and Particle Systems Characterization, vol. 24, nr 4–5, s.304–312
  • [41] Nubel K. (2002), Experimental and numerical investigation of shear localisation in granular materials. Publication Series of the Institute of Soil and Rock Mechanics, University Karlsruhe, Karlsruhe, s.62
  • [42] Pengpan T., Mitchell C.N., Soleimani M. (2010), Compensating for motion artefacts in X-ray CT using Electrical Impedance Tomography data. Proceedings of the 6th World Congress on Industrial Process Tomography (WCIPT-6), Beijing, China, s.1132–1548
  • [43] Rahmanian N., Ghadiri M., Jia X., Stepanek F. (2009), Characterisation of granule structure and strength made in a high shear granulator. Powder Technology, nr 192, s.184–194
  • [44] Richard P., Philippe P., Barbe F. i in. (2003), Analysis by X-ray microtomography of a granular packing undergoing compaction. Physical Review E, nr 68, 020301
  • [45] Roscoe K.H., Arthur J.R.F., James R.G. (1963), The determination of strains in soils by an X-ray method. Civ. Eng. Public Works Rev., nr 58, s.873–876, 1009–1012
  • [46] Scott D.M., McCann H. (2005), Process imaging for automatic control. Taylor and Francis Group, nr 439
  • [47] Selomulya C., Jia X., Williams R.A. (2005), Direct prediction of structure and permeability of flocculated structures and sediments using 3D tomographic imaging. Chemical Engineering research and Design, nr 83, s.844–852
  • [48] Shi B., Murakami Y., Wu Z. i in. (1999), Monitoring of internal failure evolution in soils using computerization X-ray tomography. Engineering Geology, vol. 54, nr 3–4, s.321–328
  • [49] Sideman S., Hijikata K. (1993), Imaging in Transport Processes. Begell House, nr 621
  • [50] Sielamowicz I., Kowalewski T., Błoński S. (2005), Application of digital particle image velocimetry in registrations of central and eccentric granular material flows. Proceedings of International Conference Powder and Grains, s.903–908
  • [51] Slominski C., Niedostatkiewicz M., Tejchman J. (2006), Deformation measurements in granular bodies using a Particie Image Velocimetry technique. Archives of Hydro- and Environmental Engineering, vol. 53, nr 1, s.71–94
  • [52] Slominski C., Niedostatkiewicz M., Tejchman J. (2007), Application of particle image velocimetry (PIV) for deformation measurement during granular silo flow. Powder Technology, vol. 173, nr 1, s.1–18
  • [53] Stock S.R. (2008), Recent advances in X-ray micro-tomography applied to material. International Materials Reviews, vol. 53, nr 3, s.129–181
  • [54] Suzuki M., Shinmura T., Limura K., Hirota M. (2008), Study of the wall effect on particle packing structure using X-ray microcomputed tomography. Advanced Powder Technology, nr 19, s.183–195
  • [55] Tejchman J., Wu W. (1995), Experimental and numerical study of sand-steel interfaces. Int. Journal of Numerical and Anal. Methods in Geomechanics, vol. 19, nr 8, s.513–537
  • [56] Vacher P., Dumoulin S., Morestin F., Mguil-Touchai S. (1999), Bidimensional strain measurement using digital images. Proc. Instn. Mech. Eng., nr 213, s.811–817
  • [57] Vardoulakis I. (1977), Scherfugenbildung in Sandkorpern als Verzweigungsproblem. PhD thesis. Institute for Soil and Rock Mechanics, Karlsruhe University, Karlsruhe, s. 70
  • [58] West R.M., Jia X., Williams R.A. (2000), Parametric modelling in industrial process tomography. Chemical Engineering Journal, vol. 77, nr 1-2, s.15, 31-36
  • [59] White D.J., Take W.A. (2002), GeoPIV: Particle Image Velocimetry (PIV) software for use in geotechnical testing. Technical Report D-SOILS-TR322, Cambridge University, Cambridge
  • [60] White D.J., Take W.A., Bolton M.D. (2003), Soil deformation measurements using particle image velocimetry (PIV) and photogrammetry. Geotechnique, vol.53, nr 7, s.619–631
  • [61] White D.J., Randolph M., Thompson B. (2005), An image-based deformation measurement system for the geotechnical centrifuge. Int. J. Phys. Model. Geotech. nr 3, s.1–12
  • [62] Williams R.A., Jia X. (2003), Tomographic imaging of particulate systems. Advanced Powder Technology, vol.14, nr 1, s.1–16
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-935583ba-2c1e-4e2d-a621-c9e0100dcd7f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.