PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Study on self-repairing and non-diffraction of Airy beams in slant atmospheric turbulence

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Airy beams propagation in atmospheric turbulence along a slant path was simulated numerically, based on the split-step Fourier method. Also, the self-repairing and non-diffraction characteristics of Airy beams were investigated and compared with beams propagation on a horizontal path. The effects of parameters including zenith angle, propagation distance, radii of Gaussian aperture and turbulence intensity on the two characteristics of beams were revealed. Additionally, the two characteristics of the Airy beam were compared with those of a Bessel–Gauss beam. The results showed that the two beams obscured by Gaussian apertures can be repaired after propagating some distance along a slant path. However, the non-diffraction characteristic of an Airy beam was stronger than that of a Bessel–Gauss beam and the amplitude attenuation rate of the Bessel–Gauss beam was greater than that of the Airy beam in the process of self-repairing. Results obtained can provide a theoretical basis for an outdoor experiment as well as theoretical guidance for various practical applications including laser communications, laser warning systems, and remote sensing.
Czasopismo
Rocznik
Strony
435--447
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
autor
  • School of Optoelectronic Engineering, Xi’an Technological University, Xi’an 710021, China
autor
  • School of Optoelectronic Engineering, Xi’an Technological University, Xi’an 710021, China
Bibliografia
  • [1] MORRIS J.E., MAZILU M., BAUMGARTL J., ČIŽMÁR T., DHOLAKIA K., Propagation characteristics of Airy beams: dependence upon spatial coherence and wavelength, Optics Express 17(15), 2009, pp. 13236–13245.
  • [2] YALONG GU, GBUR G., Scintillation of Airy beam arrays in atmospheric turbulence, Optics Letters 35(20), 2010, pp. 3456–3458.
  • [3] XIUXIANG CHU, Evolution of an Airy beam in turbulence, Optics Letters 36(14), 2011, pp. 2701–2703.
  • [4] RUI-PIN CHEN, HONG-PING ZHENG, CHAO-QING DAI, Wigner distribution function of an Airy beam, Journal of the Optical Society of America A 28(6), 2011, pp. 1307–1311.
  • [5] DONGMEI DENG, SHUNLI DU, QI GUO, Energy flow and angular momentum density of nonparaxial Airy beams, Optics Communications 289, 2013, pp. 6–9.
  • [6] XIAOLING JI, EYYUBOĞLU H.T., GUANGMING JI, XINHONG JIA, Propagation of an Airy beam through the atmosphere, Optics Express 21(2), 2013, pp. 2154–2164.
  • [7] RU-MAO TAO, LEI SI, YAN-XING MA, PU ZHOU, ZE-JIN LIU, Average spreading of finite energy Airy beams in non-Kolmogorov turbulence, Optics and Lasers in Engineering 51(4), 2013, pp. 488–492.
  • [8] ROGEL-SALAZAR J., JIMÉNEZ-ROMERO H.A., CHÁVEZ-CERDA S., Full characterization of Airy beams under physical principles, Physical Review A 89(2), 2014, article ID 023807.
  • [9] CHUNYI CHEN, HUAMIN YANG, KAVEHRAD M., ZHOU ZHOU, Propagation of radial Airy array beams through atmospheric turbulence, Optics and Lasers in Engineering 52, 2014, pp. 106–114.
  • [10] WEI WEN, XIUXIANG CHU, HAOTONG MA, The propagation of a combining Airy beam in turbulence, Optics Communications 336, 2015, pp. 326–329.
  • [11] LIN HUI-CHUAN, PU JI-XIONG, Propagation of Airy beams from right-handed material to left-handed material, Chinese Physics B 21(5), 2012, article ID 054201.
  • [12] SIVILOGLOU G.A., CHRISTODOULIDES D.N., Accelerating finite energy Airy beams, Optics Letters 32(8), 2007, pp. 979–981.
  • [13] SIVILOGLOU G.A., BROKY J., DOGARIU A., CHRISTODOULIDES D.N., Observation of accelerating Airy beams, Physical Review Letters 99(21), 2007, article ID 213901.
  • [14] YURA H.T., Mutual coherence function of a finite cross section optical beam propagating in a turbulent medium, Applied Optics 11(6), 1972, pp. 1399–1406.
  • [15] MARTIN J.M., FLATTÉ S.M., Intensity images and statistics from numerical simulation of wave propagation in 3-D random media, Applied Optics 27(11), 1988, pp. 2111–2126.
  • [16] MARTIN J.M., FLATTÉ S.M., Simulation of point-source scintillation through three-dimensional random media, Journal of the Optical Society of America A 7(5), 1990, pp. 838–847.
  • [17] FLATTÉ S.M., GUANG-YU WANG, MARTIN J., Irradiance variance of optical waves through atmospheric turbulence by numerical simulation and comparison with experiment, Journal of the Optical Society of America A 10(11), 1993, pp. 2363–2370.
  • [18] FLATTÉ S.M., GERBER J.S., Irradiance-variance behavior by numerical simulation for plane-wave and spherical-wave optical propagation through strong turbulence, Journal of the Optical Society of America A 17(6), 2000, pp. 1092–1097.
  • [19] FLATTÉ S.M., BRACHER C., GUANG-YU WANG, Probability-density functions of irradiance for waves in atmospheric turbulence calculated by numerical simulation, Journal of the Optical Society of America A 11(7), 1994, pp. 2080–2092.
  • [20] NELSON D.H., WALTERS D.L., MACKERROW E.P., SCHMITT M.J., QUICK C.R., PORCH W.M., PETRIN R.R., Wave optics simulation of atmospheric turbulence and reflective speckle effects in CO2 lidar, Applied Optics 39(12), 2000, pp. 1857–1871.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-93551228-1ed1-4e2e-9176-08454de42ff2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.