PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Ultraviolet disinfection of activated carbon from microbiological contamination

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: This article aims to investigate the effectiveness of the use of ultraviolet radiation or a combination of ultraviolet radiation and ozonation in the inactivation of microorganisms in activated carbon "Silcarbon". Design/methodology/approach: Several experimental studies where ultraviolet light, a combination of UV radiation, and ozonation were used have been performed to disinfect "Silcarbon" from microbiological contaminants. Findings: Experimental results have shown that with pulsed xenon lamps and low-pressure mercury ozone lamps, satisfactory results can be obtained in which the total amount of yeast and mould fungi range from 50 CFU/g to 75 CFU/g. Research limitations/implications: It is advisable to continue the study of powder materials, including drugs, on the content of microbiological contaminants to assess their compliance with regulatory requirements. Practical implications: The application of the proposed approach to the inactivation of microorganisms allows one to obtain a safe sorbent on the content of microbiological indicators and can be successfully used in any other field to disinfection powder materials using different modes of UV irradiation. Originality/value: The originality of the article's results proposes a method of disinfection of the sorbent "Silcarbon" from moulds and yeasts for therapeutic purposes in medicine.
Rocznik
Strony
34--41
Opis fizyczny
Bibliogr. 33 poz.
Twórcy
autor
  • Department of Commodity Studies, Biotechnology, Expertise and Customs, Poltava University of Economics and Trade, 3 Koval str., Poltava, 36014, Ukraine
  • Department of Commodity Studies, Biotechnology, Expertise and Customs, Poltava University of Economics and Trade, 3 Koval str., Poltava, 36014, Ukraine
Bibliografia
  • [1] Pharmaceutical Microbiology Manual, Document Number: ORA.007, Food and Drug Administration Office of Regulatory Affairs Office of Regulatory Science, 2020. Available from: https://www.fda.gov/media/88801/download
  • [2] European Pharmacopoeia, European Directorate for the Quality of Medicines EDQM, 7th Edition, Strasbourg, 2010.
  • [3] L. Preem, E. Vaarmets, A. Meos, I. Jõgi, M. Putrinš, T. Tenson, K. Kogermann, Effects and Efficacy of Different Sterilisation and Disinfection Methods on Electrospun Drug Delivery Systems, International Journal of Pharmaceutics 567 (2019) 118450. DOI: https://doi.org/10.1016/j.ijpharm.2019.118450
  • [4] M. Ratajczak, M.M. Kubicka, D. Kamińska, P. Sawicka, J. Długaszewska, Microbiological Quality of Non-sterile Pharmaceutical Products, Saudi Pharmaceutical Journal 23/3 (2015) 303-307. DOI: https://doi.org/10.1016/j.jsps.2014.11.015
  • [5] R. Palmeira-de-Oliveira, C. Luís, C. Gaspar, E. Bogas, M. Morgado, M. Guardado, M.C. Branco, M.O. Fonseca, A. Palmeira-de-Oliveira, Microbiological Quality Control of Non-sterile Compounded Medicines Prepared in a Portuguese Hospital Centre, European Journal of Hospital Pharmacy 23/4 (2016) 228-232. DOI: https://doi.org/10.1136/ejhpharm-2015-000769
  • [6] V. Mugoyela, K.D. Mwambete, Microbial Contamination of Nonsterile Pharmaceuticals in Public Hospital Settings, Therapeutics and Clinical Risk Management 6 (2010) 443-448. DOI: https://doi.org/10.2147/TCRM.S12253
  • [7] S. Kyei, E. Dogbadze, S. Tagoh, E. Mwanza, Unorthodox Ophthalmic Preparations on the Ghanaian market: a Potential Risk for Ocular and Enteric Infections, African Health Sciences 20/1 (2020) 515- 523. DOI: https://doi.org/10.4314/ahs.v20i1.58
  • [8] H. Zeitoun, M. Kassem, D. Raafat, H. AbouShlieb, N. Fanaki, Microbiological Testing of Pharmaceuticals and Cosmetics in Egypt, BMC Microbiology 15 (2015) 275. DOI: https://doi.org/10.1186/s12866-015-0609-z
  • [9] D. Pullirsch, J. Bellemare, A. Hackl, Y.-L. Trottier, A. Mayrhofer, H. Schindl, C. Taillon, C. Gartner, B. Hottowy, G. Beck, J. Gagnon, Microbiological Contamination in Counterfeit and Unapproved Drugs, BMC Pharmacolology and Toxicology 15 (2014) 34. DOI: https://doi.org/10.1186/2050-6511-15-34
  • [10] R.G. Vida, S. Merczel, E. Jáhn, A. Fittler, Developing a Framework Regarding a Complex Risk Based Methodology in the Evaluation of Hazards Associated With Medicinal Products Sourced Via the Internet, Saudi Pharmaceutical Journal 28/12 (2020) 1733-1742. DOI: https://doi.org/10.1016/j.jsps.2020.10.018
  • [11] I. Matulyte, A. Mataraite, S. Velziene, J. Bernatoniene, The Effect of Myristica fragrans on Texture Properties and Shelf-Life of Innovative Chewable Gel Tablets, Pharmaceutics 13/2 (2021) 238. DOI: https://doi.org/10.3390/pharmaceutics13020238
  • [12] M.N. Abualhasan, N. Jaradat, M. Hawash, R. Khayat, E. Khatatbeh, M. Ehmidan, M. Al-Atrash, Evaluation of Heavy Metal and Microbial Contamination in Green Tea and Herbal Tea Used for Weight Loss in the Palestinian Market, Evidence-Based Complementary and Alternative Medicine 2020 (2020) 7631562. DOI: https://doi.org/10.1155/2020/7631562
  • [13] R.W. Coppock, M.M. Dziwenka, Mycotoxins, in: R.C. Gupta (ed.), Biomarkers in Toxicology, Academic Press, Cambridge, MA, USA, 2014, 549-562. DOI: https://doi.org/10.1016/B978-0-12-404630-6.00032-4
  • [14] P. Ziarati, M. Tamaskoni-Zahedi, M. Mostafidi, F. Shirkhan, S. Vambol, V. Vambol, Theoretical study of food contamination mechanisms by melamine and hazard of melamine for health, Journal of Achieve-ments in Materials and Manufacturing Engineering 89/2 (2018) 73-84. DOI: https://doi.org/10.5604/01.3001.0012.7111
  • [15] F. Wu, J.D. Groopman, J.J. Pestka, Public Health Impacts of Foodborne Mycotoxins, Annual Review of Food Science Technology 5/1 (2014) 351-372. DOI: https://doi.org/10.1146/annurev-food-030713-092431
  • [16] A. Semenov, T. Sakhno, N. Barashkov, Ultraviolet Disinfection of Activated Carbon and its use for Microbiological Decontamination, Proceedings of the 257th American Chemical Society National Meeting and Exposition “Green Chemistry and the Environmental”, Orlando, Florida, USA, 2019, 409.
  • [17] Y. Fan, F. Namata, J. Erlandsson, Y. Zhang, L. Wagberg, M. Malkoch, Self-Assembled Polyester Dendrimer/Cellulose Nanofibril Hydrogels with Extraordinary Antibacterial Activity, Pharmaceutics 12/12 (2020) 1139. DOI: https://doi.org/10.3390/pharmaceutics12121139
  • [18] L. Wang, C. Hu, L. Shao, The Antimicrobial Activity of Nanoparticles: Present Situation and Prospects for the Future, International Journal of Nanomedicine 12 (2017) 1227-1249. DOI: https://doi.org/10.2147/IJN.S121956
  • [19] A. Kaczmarek-Pawelska, K. Winiarczyk, J. Mazurek, Alginate based hydrogel for tissue regeneration: optimisation, antibacterial activity and mechanical properties, Journal of Achievements in Materials and Manufacturing Engineering 81/1 (2017) 35-40. DOI: https://doi.org/10.5604/01.3001.0010.2034
  • [20] G.V. Vimbela, S.M. Ngo, C. Fraze, L. Yang, D.A. Stout, Antibacterial Properties and Toxicity from Metallic Nanomaterials, International Journal of Nano-medicine 12 (2017) 3941-3965. DOI: https://doi.org/10.2147/IJN.S134526
  • [21] S. Mohapatra, Sterilization and Disinfection, in: H. Prabhakar (ed.), Essentials of Neuroanesthesia, Academic Press, Cambridge, MA, USA, 2017, 929- 944. DOI: https://doi.org/10.1016/B978-0-12-805299- 0.00059-2
  • [22] C. Otto, S. Zahn, F. Rost, P. Zahn, D. Jaros, H. Rohm, Physical Methods for Cleaning and Disinfection of Surfaces, Food Engineering Reviews 3/3 (2011) 171- 188. DOI: https://doi.org/10.1007/s12393-011-9038-4
  • [23] M. Belhachemi, F. Addoun, Effect of Heat Treatment on the Surface Properties of Activated Carbons, E-Journal of Chemistry 8/3 (2011) 992-999. DOI: https://doi.org/10.1155/2011/649254
  • [24] T. Dai, M.S. Vrahas, C.K. Murray, M.R. Hamblin, Ultraviolet C Irradiation: an Alternative Antimicrobial Approach to Localised infections?, Expert Review of Anti-infective Therapy 10/2 (2012) 185-195. DOI: https://doi.org/10.1586/eri.11.166
  • [25] A. Semenov, G. Kozhushko, Device for Germicidal Air Disinfection by Ultraviolet Radiation, Eastern- European Journal of Enterprise Technologies 3/10(69) (2014) 13-17 (in Ukrainian). DOI: https://doi.org/10.15587/1729-4061.2014.24822
  • [26] A. Semenov, T. Sakhno, Y. Sakhno, Photobiological safety of lamps and lamp systems in agriculture, Journal of Achievements in Materials and Manufacturing Engineering 106/1 (2021) 34-41. DOI: https://doi.org/10.5604/01.3001.0015.0527
  • [27] A.E. Martinez de Alba, M.B. Rubio, M.E. Morán-Diez, C. Bernabéu, R. Hermosa, E. Monte, Microbiological Evaluation of the Disinfecting Potential of UV-C and UV-C Plus Ozone Generating Robots, Microorganisms 9/1 (2021) 172. DOI: https://doi.org/10.3390/microorganisms9010172
  • [28] A. Semenov, T. Sakhno, O. Hordieieva, Y. Sakhno, Pre-sowing treatment of vetch hairy seeds, viсia villosa using ultraviolet irradiation, Global Journal Environ-mental Science and Management 7/4 (2021) 555-564. DOI: https://doi.org/10.22034/GJESM.2021.04.05
  • [29] Guide to Good Manufacturing Practice for Medicinal Products, Pharmaceutical Inspection Convention Pharmaceutical Inspection Co-operation Scheme, PE 009-10 (Intro), PIC/S, Geneva, 2013.
  • [30] H. J. Han, C. Nwagwu, O. Anyim, C. Ekweremadu, S. Kim, COVID-19 and Cancer: From Basic Mechanisms to Vaccine Development Using Nanotechnology, International Immunopharmacology 90 (2021) 107247. DOI: https://doi.org/10.1016/j.intimp.2020.107247
  • [31] S. Yamayoshi, Y. Sakai-Tagawa, M. Koga, O. Akasaka, I. Nakachi, H. Koh, K. Maeda, E. Adachi, M. Saito, H. Nagai, K. Ikeuchi, T. Ogura, R. Baba, K. Fujita, T. Fukui, F. Ito, S.I. Hattori, K. Yamamoto, T. Nakamoto, Y. Furusawa, A. Yasuhara, M. Ujie, S. Yamada, M. Ito, H. Mitsuya, N. Omagari, H. Yotsuyanagi, K. Iwatsuki-Horimoto, M. Imai, Y. Kawaoka, Comparison of Rapid Antigen Tests for COVID-19, Viruses 12/12 (2020) 1420. DOI: https://doi.org/10.3390/v12121420
  • [32] W.J. Kowalski, Ultraviolet Germicidal Irradiation Handbook: UVGI for Air and Surface Disinfection, Springer-Verlag, Berlin ‒ Heidelberg, 2009. DOI: https://doi.org/10.1007/978-3-642-01999-9
  • [33] A.M.C. Santos, M.S. Doria, L. Meirinhos-Soares, A.J. Almeida, J.C. Menezes, A QRM Discussion of Microbial Contamination of Non-sterile Drug Products, Using FDA and EMA Warning Letters Recorded between 2008 and 2016, PDA Journal of Pharma-ceutical Science and Technology 72/1 (2018) 62-72. DOI: https://doi.org/10.5731/pdajpst.2016.007252
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-935281ea-01e4-4a69-b977-cfca6dda9d1f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.