PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Darcy’s and Forchheimer’s laws in practice. Part 2. The numerical model

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Our study is based on a column experiment of water flow through a porous granular bed. In Part 1 we propose eight methods to derive parameters of flow models based on measurement data. These parameters are permeability and Forchheimer coefficient for Darcy’s and Forchheimer’s laws. The approach presented in this part uses two numerical models to perform simulations of flow. One model is based on the Finite Element Method implemented in the authors’ code. The second model, which is ANSYS/Fluent package, uses the Finite Volume Method. Results of numerical computations are compared with experimental data that allows determination of the best method of parameter evaluation (in which the error was less than 3% over the whole range of filtration velocities). The problem of identification of ranges of applicability of the Darcy’s and Forchheimer’s laws is also addressed. In the conclusions, a set of guidelines is given, which should facilitate planning a similar experiment and its computational processing.
Rocznik
Tom
Strony
337--350
Opis fizyczny
Bibliogr. 18 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Mechanics and Machine Design, University of Warmia and Mazury in Olsztyn
autor
  • Interdisciplinary Centre for Mathematical and Computational Modeling, University of Warsaw
Bibliografia
  • AALTOSALMI U. 2005. Fluid Flow in Porous Media with the Lattice-Boltzmann Method. PhD Thesis. Department of Physics, University of Jyväskylä. Finland, July.
  • ANDRADE J.S., COSTA U.M.S., ALMEIDA M.P., MAKSE H.A., STANLEY H.E. 1999. Inertial Effects on Fluid Flow through Disordered Porous Media. Physical Review Letters, 82(26), 5249-5252.
  • BEAR J. 1972. Dynamics of Fluids in Porous Media. Dover, New York.
  • BREUGEM W.P., BOERSMA B.J., UTTENBOGAARD R.E. 2004. Direct numerical simulations of plane channel flow over a 3D Cartesian grid of cubes. In: Applications of porous media (ICAPM 2004). Eds. A.H. Reis, A.F. Miguel. Evora Geophysics Center,. Évora, pp. 27-35.
  • ANSYS Fluent Home Page. 2014. On line:: http://www.ansys.com/Products/Simulation+Technology/Fluid+Dynamics/Fluid+Dynamics+Products/ANSYS+Fluent (access: 1 April 2014).
  • Fluent Inc. 2006. Fluent 6.3 User’s Guide (September 2006), Chapter 7.19: Porous Media Conditions.
  • FOURAR M., LENORMAND R., KARIMI-FARD M. 2005. Inertia Effects in High-Rate Flow Through Heterogeneous Porous Media. Transport in Porous Media, 60(3): 353-370.
  • GAMBIT Home Page 2008. On line: http://www.fluent.com/software/gambit/index.htm (access: 1 March 2008).
  • GARIBOTTI C., PESZYŃSKA M. 2009. Upscaling non-Darcy flow. Transport in Porous Media, 80(3): 401-430.
  • KAASSCHIETER E.F. 1988. Preconditioned conjugate gradients for solving singular systems. Journal of Computational and Applied Mathematics, 24(1-2): 265-275.
  • LUCQUIN B., PIRONNEAU O. 1998. Introduction to Scientific Computing. Wiley. Chichester. PATIÑO O.A.L. 2003. Optimisation of Heat Sinks by Computational Flow Dynamics Techniques. PhD Thesis. Gent University, Gent, Belgium.
  • PESZYŃSKA M., TRYKOZKO A. 2013 Pore-to-core simulations of flow with large velocities using continuum models and imaging data. Computational Geosciences, 17(4): 623-645.
  • SOBIESKI W. 2010a. Examples of Using the Finite Volume Method for Modeling Fluid-Solid Systems. Technical Sciences, 13: 256-265.
  • SOBIESKI W. 2010b. Use of Numerical Models in Validating Experimental Results. Journal of Applied Computer Science, 18(1): 49-60.
  • SOBIESKI W. 2011. The Basic Equations of Fluid Mechanics in Form Characteristic of the Finite Volume Method. Technical Sciences, 14(2): 299-313.
  • SOBIESKI W. 2013. The Basic Closures of Fluid Mechanics in Form Characteristic for the Finite Volume Method. Technical Sciences, 16(2): 93-107.
  • VAKILHA M., MANZARI M.T. 2008. Modelling of Power-law Fluid Flow Through Porous Media Using Smoothed Particle Hydrodynamics. Transport in Porous Media, 74(3): 331-346.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-934da365-060b-427b-a578-aac3793e8621
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.