PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Enhancement in NBE emission and optical band gap by Al doping in nanocrystalline ZnO thin films

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Transparent Al doped ZnO nanocrystalline films with a crystallite size less than 19 nm are obtained by spray pyrolysis. Band gap increases monotonically from 3.16 to 3.31 eV with increasing aluminum dopant up to 1.56 at.% facilitating increasing width of a transmission window in addition to the band gap tuning of 4.74% which compares favorably well with literature. UV emission with continuously increasing intensity is obtained which reflects on the good crystalline quality of the films. Also the defect emissions are suppressed remarkably as the dopant Al concentration increases in ZnO. The band gap tuning by quite small increment in dopant amount makes the present films, much attractive for the fabrication of light emitting devices with a much sought-for benefit of large area fabrication. FESEM shows the surface is granular with grain size lying in the range of 20-35 nm and EDX confirms the presence of Al in the doped samples.
Twórcy
autor
  • Department of Physics, University of Lucknow, Lucknow, 226007, India
  • Department of Physics, University of Lucknow, Lucknow, 226007, India
Bibliografia
  • [1] H. Kim, C.M. Gilmore, A. Pique, J.S. Horwitz, H. Murata, Z.H. Kafafi, D.B. Chrisey, Electrical optical, and structural properties of indium-tin-oxide thin films for organic light-emitting devices, J. Appl. Phys. 86 (1999) 6451-6461.
  • [2] H. Kim, C.M. Gilmore, J.S. Horwitz, A. Pique, H. Murata, G.P. Kushto, R. Schlaf, Z.H. Kafafi, D.B. Chrisey, Transparent conducting aluminum-doped zinc oxide thin films for organic light-emitting devices, Appl. Phys. Lett. 76 (2000) 259.
  • [3] H. Kim, A. Pique, J.S. Horwitz, H. Murata, Z.H. Kafafi, C.M. Gilmore, D.B. Chrisey, Effect of aluminum doping on zinc oxide thin films grown by pulsed laser deposition for organic light-emitting devices, Thin Solid Films 377–378 (2000) 798-802.
  • [4] J.-L. Zhao, X.-M. Li, J.-M. Bian, W.-D. Yu, X.-D. Gao, Structural, optical and electrical properties of ZnO films grown by pulsed laser deposition (PLD), J. Cryst. Growth 276 (2005) 507-512.
  • [5] R. Das, S. Ray, Thickness dependence of the properties of magnetron sputtered ZnO: Al films and its application in a-Si:H thin film solar cell, Indian J. Phys. 78 (2004) 901-906.
  • [6] Y. He, J. Kanicki, High-efficiency organic polymer light-emitting heterostructure devices on flexible plastic substrates, Appl. Phys. Lett. 76 (2000) 661-663.
  • [7] S.-H. Lee, Se-H. Han, H.S. Jung, H. Shin, J. Lee, J.-H. Noh, S. Lee, I.-S. Cho, J.-K. Lee, J. Kim, H. Shin, Al-doped ZnO thin film: a new transparent conducting layer for ZnO nanowire-based dye-sensitized solar cells, J. Phys. Chem. C 114 (2010) 7185-7189.
  • [8] S. Kaps, S. Bhowmick, J. Grottrup, V. Hrkac, D. Stauffer, H. Guo, O.L. Warren, J. Adam, L. Kienle, A.M. Minor, R. Adelung, Y.K. Mishra, Piezoresistive response of quasi-one-dimensional ZnO nanowires using an in situ electromechanical device, ACS Omega 2 (2017) 2985-2993.
  • [9] V. Postica, J. Gröttrup, R. Adelung, O. Lupan, A.k. kMishra, N.H.d. Leeuw, N. Ababii, J.F.C. Carreira, J. Rodrigues, N.B. Sedrine, M.R. Correia, T. Monteiro, V. Sontea, Y.K. Mishra, Multifunctional materials: a case study of the effects of metal doping on ZnO tetrapods with bismuth and tin oxides, Adv. Funct. Mater. 27 (2017) 1604676.
  • [10] I. Tiginyanu, L. Ghimpu, J. Gröttrup, V. Postolache, M. Mecklenburg, M.A. Stevens-Kalceff, V. Ursaki, N. Payami, R. Feidenhansl, Karl Schulte, R. Adelung, Y.K. Mishra, Strong light scattering and broadband (UV to IR) photoabsorption in stretchable 3D hybrid architectures based on aerographite decorated by ZnO nanocrystallites, Sci. Rep. 6 (32913) (2016) 1-11.
  • [11] C. Klingshirn, ZnO: From basics towards applications, Phys. Status Solidi B 244 (2007) 3027-3073.
  • [12] X. Jin, M. Götz, S. Wille, Y.K. Mishra, R. Adelung, C. Zollfrank, A novel concept for self-reporting materials: stress sensitive photoluminescence in ZnO tetrapod filled elastomers, Adv. Mater. 25 (2013) 1342-1347.
  • [13] K.J. Saji, K. Tian, M. Snure, A. Tiwari, 2D tin monoxide—an unexplored p-type van der waals semiconductor: material characteristics and field effect transistors, Adv. Electron. Mater. 2 (2016) 1500453.
  • [14] Y.K. Mishra, S. Kaps, A. Schuchardt, I. Paulowicz, X. Jin, D. Gedamu, S. Freitag, M. Claus, S. Wille, A. Kovalev, S.N. Gorb, R. Adelung, Fabrication of macroscopically flexible and highly porous 3D semiconductor networks from interpenetrating nanostructures by a simple flame transport approach part, Part. Syst. Charact. 30 (2013) 775-783.
  • [15] T. Reimer, I. Paulowicz, R. Röder, S. Kaps, O. Lupan, S. Chemnitz, W. Benecke, C. Ronning, R. Adelung, Y.K. Mishra, Single step integration of ZnO Nano- and microneedles in Si trenches by novel flame transport approach: whispering gallery modes and photocatalytic properties, ACS Appl. Mater. Interfaces 6 (2014) 7806-7815.
  • [16] R.K. Shukla, A. Srivastava, A. Srivastava, K.C. Dubey, Growth of transparent conducting nanocrystalline Al doped ZnO thin films by pulsed laser deposition, J. Cryst. Growth 294 (2006) 427-431.
  • [17] A. Sarkar, S. Ghosh, S. Chaudhuri, A.K. Pal, Studies on electron transport properties and the burstein-moss shift in indium-doped ZnO films, Thin Solid Films 204 (1991) 255-264.
  • [18] V. Bhosle, A. Tiwari, J. Narayan, Electrical properties of transparent and conducting Ga doped ZnO, J. Appl. Phys. 100 (2006) 033713.
  • [19] B.K. Sharma, N. Khare, Stress-dependent band gap shift and quenching of defects in Al-doped ZnO films, J. Phys. D: Appl. Phys. 43 (2010) 465402.
  • [20] J.H. Lee, B.O. Park, Transparent conducting ZnO:Al, In and Sn thin films deposited by the sol-gel method, Thin Solid Films 426 (2003) 94-99.
  • [21] M. Ohyama, H. Kozuka, T. Yoko, Sol-gel preparation of transparent and conductive aluminum-doped zinc oxide films with highly preferential crystal orientation, J. Am. Ceram. Soc. 81 (1998) 1622-1632.
  • [22] Y. Yamamoto, K. Saito, K. Takakashi, M. Konagai, Preparation of boron-doped ZnO thin films by photo-atomic layer deposition, Sol. Energy Mater. Sol. Cells 65 (2001) 125-132.
  • [23] A. Sanchez-Juarez, A. Tiburcio-Silver, A. Oritz, E.P. Zironi, J. Rickards, Electrical and optical properties of fluorine-doped ZnO thin Films prepared by spray pyrolysis, Thin Solid Films 333 (1998) 196–202.
  • [24] Y. Natsume, H. Sakata, Electrical and optical properties of zinc oxide films post-annealed in H2after fabrication by sol-gel process, Mater. Chem. Phys. 78 (2002) 170-176.
  • [25] Z. Zhan, J. Zhang, Q. Zheng, D. Pan, J. Huang, F. Huang, Z. Lin, Strategy for preparing Al-doped ZnO thin film with high mobility and high stability, Cryst. Growth Des. 11 (2011) 21-25.
  • [26] D. Mishra, A. Srivastava, A. Srivastava, R.K. Shukla, Bead structured nanocrystalline ZnO thin films: synthesis and LPG sensing properties, Appl. Surf. Sci. 255 (2008) 2947-2950.
  • [27] A.K. Das, P. Misra, A. Bose, S.C. Joshi, R. Kumar, T.K. Sharma, L.M. Kukreja, Structural, electrical and optical characteristics of Al doped ZnO films grown by sequential pulsed laser deposition, Phys. Express 3 (2013) 15.
  • [28] J.G. Lu, S. Fujita, T. Kawaharamura, H. Nishinaka, Y. Kamada, T. Ohshima, Z.Z. Ye, Y.J. Zeng, Y.Z. Zhang, L.P. Zhu, H.P. He, B.H. Zhao, Carrier concentration dependence of band gap shift in n—type ZnO:Al films, J. Appl. Phys. 101 (2007) 083705.
  • [29] K.P. Misra, R.K. Shukla, A. Srivastava, A. Srivastava, Blueshift in optical band gap in nanocrystalline Zn1-xCaxO films deposited by sol-gel method, Appl. Phys. Lett. 95 (2009) 031901.
  • [30] A.K. Das, P. Misra, L.M. Kukreja, Effect of Si doping on electrical and optical properties of ZnO thin films grown by sequential pulsed laser deposition, J. Phys. D: Appl. Phys. 42 (2009) 165405.
  • [31] H.K. Yadav, V. Gupta, A comparative study of ultraviolet photoconductivity relaxation in zinc oxide (ZnO) thin films deposited by different techniques, J. Appl. Phys. 111 (2012) 102809.
  • [32] K.-Y. Wu, C.-C. Wang, D.-H. Chen, Preparation and conductivity enhancement of Al-doped zinc oxide thin films containing trace Ag nanoparticles by the sol-gel process, Nanotechnology 18 (2007) 305604.
  • [33] A. Srivastava, N. Kumar, S. Khare, Enhancement in UV emission and band gap by Fe doping in ZnO thin films, Opto-Electron. Rev. 22 (2014) 68-76.
  • [34] Y.W. Li, J.L. Sun, X.J. Meng, J.H. Chu, W.F. Zhang, Structural and optical properties of Ba(Cox, Ti1-x)O3thin films fabricated by sol-gel process, Appl. Phys. Lett. 85 (2004) 1964-1966.
  • [35] F.W. Jones, The measurement of particle size by the X-ray method, Proc. R. Soc. London 66 (1938) 16-43.
  • [36] A. Srivastava, N. Kumar, K.P. Misra, S. Khare, Blue-light luminescence enhancement and increased band gap from calcium-doped zinc oxide nanoparticle films, Mater. Sci. Semicond. Process. 26 (2014) 259-266.
  • [37] G.K. Williamson, W.H. Hall, X-ray line broadening from filed aluminium and wolfram, Acta Metall. 1 (1953) 22-31.
  • [38] S. Kahraman, F. Bayansal, H.M. C¸ akmak, H.A. C¸ etinkara, H.S. Güder, Synthesis and characterization of undoped and tin-doped ZnO nanostructures, Appl. Phys. A 109 (2012) 87-93.
  • [39] N. Kumar, A. Srivastava, Faster photoresponse, enhanced photosensitivity and photoluminescence in nanocrystalline ZnO films suitably doped by Cd, J. Alloys Compd. 706 (2017) 438-446.
  • [40] A. Douayar, P. Prieto, G. Schmerber, K. Nouneh, R. Diaz, I. Chaki, S. Colis, A. El Fakir, N. Hassanain, A. Belayachi, Z. Sekkat, A. Slaoui, A. Dinia, M. Abd-Lefdi, Investigation of the structural, optical and electrical properties of Nd-doped ZnO thin films deposited by spray pyrolysis, Eur. Phys. J. Appl. Phys. 61 (2013) 0304.
  • [41] L. Chabane, N. Zebbar, M. Kechouane, M.S. Aida, M. Trari, Al-doped and in-doped ZnO thin films in heterojunctions with silicon, Thin Solid Films 605 (2016) 57-63.
  • [42] A. Srivastava, K.P. Misra, Band gap control and photoluminescence properties of Ba(Co2xTi1-x)O3 thin films prepared by sol-gel method, Appl. Phys. A 117 (2014) 917-926.
  • [43] E. Burstein, Anomalous optical absorption limit in InSb, Phys. Rev. 93 (1954) 632-633.
  • [44] T.S. Moss, The interpretation of the properties of indium antimonide, Proc. Phys. Soc. London Ser. B 67 (1954) 775.
  • [45] Y. Kim, W. Lee, D.-R. Jung, J. Kim, S. Nam, H. Kim, B. Park, Optical and electronic properties of post-annealed ZnO:Al thin films, Appl. Phys. Lett. 96 (2010) 171902.
  • [46] S.H. Park, S.E. Park, J.C. Lee, P.K. Song, Photoluminescence characterization of Al-doped ZnO films deposited by using DC magnetron sputtering, J. Korean Phys. Soc. 54 (2009) 1344-1347.
  • [47] B. Murali, J. Parui, M. Madhuri, S.B. Krupanidhi, An insight to the low temperature conduction mechanism of c-axis grown Al-doped ZnO, a widely used transparent conducting oxide, J. Phys. D: Appl. Phys. 48 (2015) 015301.
  • [48] H. Hung-Chun Lai, T. Basheer, V.L. Kuznetsov, R.G. Egdell, R.M.J. Jacobs, M. Pepper, P.P. Edwards, Dopant-induced bandgap shift in Al-doped ZnO thin films prepared by spray pyrolysis, J. Appl. Phys. 112 (2012) 083708.
  • [49] M. Wang, K.E. Lee, S.H. Hahn, E.J. Kim, S. Kim, J.S. Chung, E.W. Shin, C. Park, Optical and photoluminescent properties of sol-gel Al-doped ZnO thin films, Mater. Lett. 61 (2007) 1118.
  • [50] A. Davoodi, M. Tajally, O. Mirzaee, A. Eshaghi, Fabrication and characterization of optical and electrical properties of Al-Ti Co-doped ZnO nano-structured thin film, J. Alloys Compd. 657 (2016) 296-301.
  • [51] A. Nakrela, N. Benramdane, A. Bouzidi, Z. Kebba, M. Medles, C. Mathieu, Site location of Al-dopant in ZnO lattice by exploiting the structural and optical characterisation of ZnO:Al thin films, Results Phys. 6 (2016) 133-138.
  • [52] M.M. Rahman, M.K.R. Khan, M.R. Islam, M.A. Halim, M. Shahjahan, M.A. Hakim, D.K. Saha, J. Uddin Khan, Effect of Al doping on structural electrical, optical and photoluminescence properties of nano-structural ZnO thin films, J. Mater. Sci. Technol. 28 (2012) 329.
  • [53] W. Yang, Z. Wu, Z. Liu, A. Pang, Y.-L. Tu, Z.C. Feng, Room temperature deposition of Al-doped ZnO films on quartz substrates by radio-frequency magnetron sputtering and effects of thermal annealing, Thin Solid Films 519 (2010) 31-36.
  • [54] A. Antony, S. Pramodini, P. Poornesh, I.V. Kityk, A.O. Fedorchuk, G. Sanjeev, Influence of electron beam irradiation on nonlinear optical properties of Al doped ZnO thin films for optoelectronic device applications in the cw laser regime, Opt. Mater. 62 (2016) 64-71.
  • [55] J. Kumar, A.K. Srivastava, Band gap narrowing in zinc oxide-based semiconductor thin films, J. Appl. Phys. 115 (2014) 134904.
  • [56] K.G. Saw, N.M. Aznan, F.K. Yam, S.S. Ng, S.Y. Pung, New insights on the burstein-moss shift and band gap narrowing in indium-doped zinc oxide thin films, PLoS One 10 (2015) 1-17.
  • [57] J. Wang, Z. Wang, B. Huang, Y. Ma, Y. Liu, X. Qin, X. Zhang, Y. Dai, Oxygen vacancy induced band-gap narrowing and enhanced visible light photocatalytic activity of ZnO, ACS appl, Mater. Interfaces 4 (2012) 4024-4030.
  • [58] R.B. Bylsma, M. Becker, J. Kossut, U. Debska, Dependence of energy gap on x and T in Zn1-xMnxSe: the role of exchange interaction, Phys. Rev. B 33 (1986) 8207.
  • [59] J. Diouri, J.P. Lascaray, M. El Amrani, Effect of the magnetic order on the optical-absorption edge in Cd1-xMnxTe, Phys. Rev. B 31 (1985) 7995-7999.
  • [60] T. Fukumura, Z. Jin, A. Ohtomo, H. Koinuma, M. Kawasaki, An oxide-diluted magnetic semiconductor: Mn-doped ZnO, Appl. Phys. Lett. 75 (1999) 3366-3368.
  • [61] J.K. Furdyna, Diluted magnetic semiconductors, J. Appl. Phys. 64 (1988) R29.
  • [62] B.K. Sharma, N.j Khare, D. Haranath, Photoluminescence lifetime of Al-doped ZnO films in visible region, Solid State Commun. 150 (2010) 2341-2345.
  • [63] A. Das, P.G. Roy, A. Dutta, S. Sen, P. Pramanik, D. Das, A. Banerjee, A. Bhattacharyya, Mg and Al co-doping of ZnO thin films: effect on ultraviolet photoconductivity, Mater. Sci. Semicond. Process. 54 (2016) 36-41.
  • [64] F. Wen, W. Li, J.-H. Moon, J.H. Kim, Hydrothermal synthesis of ZnO:Zn with green emission at low temperature with reduction process, Solid State Commun. 135 (2005) 34-37.
  • [65] K. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voight, Mechanisms behind green photoluminescence in ZnO phosphor powders, J. Appl. Phys. 79 (1996) 7983.
  • [66] Y.L. Shi, J. Wang, H.L. Li, Photoluminescence behavior of purpose-built ZnO arrays on different growth substrates, Appl. Phys. A 79 (2004) 1797-1799.
  • [67] B. Lin, Z. Fu, Y. Jia, Green luminescent center in undoped zinc oxide films deposited on silicon substrates, Appl. Phys. Lett 79 (2001) 943.
  • [68] P.S. Xu, Y.M. Sun, C.S. Shi, F.Q. Xu, H.B. Pan, Nucl. Instrum. Methods Phys. Res. B 199 (2003) 286.
  • [69] H. Ryoken, I. Sakaguchi, N. Ohashi, T. Sekiguchi, S. Hishita, H. Haneda, Non-equilibrium defects in aluminum-doped zinc oxide thin films grown with a pulsed laser deposition method, J. Mater.Res. 20 (2005) 2866-2872.
  • [70] Y. Liu, H. Zhang, X. An, C. Gao, Z. Zhang, J. Zhou, M. Zhou, E. Xie, Effect of Al doping on the visible photoluminescence of ZnO nanofibers, J. Alloy. Compd. 506 (2010) 772-776.
  • [71] A. Srivastava, N. Kumar, K.P. Misra, S. Khare, Enhancement of band gap of ZnO nanocrystalline films at a faster rate using Sr dopant, Electron. Mater. Lett. 10 (2014) 703-711.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-934d7cbf-8826-4c3f-a96a-9b45baf2ae81
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.