Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The hemp-lime composite is a material with high porosity; therefore, it has a high ability to absorb water. Long-term contact of the composite with water is a destructive factor for the material due to the content of organic components and the lack of a hydraulic binder. It is important to look for ways to modify the composition of the composite in order to reduce water absorption. In traditional old construction, acid casein was used to improve the strength and water resistance of lime mortars. In this study, the influence of the admixture of casein in the amount of 1, 3, 5% of the binder mass on the water absorption and capillary rise of the hemp-lime composite was examined. Both the content of shives and the admixture of animal origin may contribute to the development of biological corrosion, which is why microbiological tests were performed on composite samples using the impression and swab method. As the casein content increased, the water absorption of the composite was reduced. The rate of capillary rise and the amount of rising water were also reduced. The addition of casein limited the ability to absorb water without significantly increasing the susceptibility to the development of microorganisms. The research should be extended to include, among others: the influence of this admixture on the composite's vapor permeability and mechanical properties.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
432--448
Opis fizyczny
Bibliogr. 45 poz., fig., tab.
Twórcy
autor
- Faculty of Civil Engineering and Architecture, Lublin University of Technology, ul. Nadbystrzycka 40, Lublin, 20-618, Poland
autor
- Faculty of Environmental Engineering, Lublin University of Technology, ul. Nadbystrzycka 40B, 20-618 Lublin, Poland
Bibliografia
- 1. Johansson, P.; Ekstrand-Tobin, A.; Svensson, T.; Bok, G. Laboratory study to determine the critical moisture level for mould growth on building materials. Int Biodeterior Biodegradation 2012, 73, doi:10.1016/j.ibiod.2012.05.014.
- 2. Nielsen, K.F.; Holm, G.; Uttrup, L.P.; Nielsen, P.A. Mould growth on building materials under low water activities. Influence of humidity and temperature on fungal growth and secondary metabolism. Int Biodeterior Biodegradation 2004, 54, doi:10.1016/j.ibiod.2004.05.002.
- 3. Hofbauer, W.; Krueger, N.; Breuer, K.; Sedlbauer, K. Mould resistance assessment of building materials - material specific isopleth-systems for practical application. Proceedings of Indoor Air 2008 2008, 1.
- 4. Chemeda, Y.C.; Deneele, D.; Christidis, G.E.; Ouvrard, G. Influence of hydrated lime on the surface properties and interaction of kaolinite particles. Appl Clay Sci 2015, 107, doi:10.1016/j.clay.2015.01.019.
- 5. Walker, R.; Pavia, S.; Mitchell, R. Mechanical Properties and Durability of Hemp-Lime Concretes. Constr Build Mater 2014, 61, doi:10.1016/j.conbuildmat.2014.02.065.
- 6. Marceau, S.; Glé, P.; Guéguen-Minerbe, M.; Gourlay, E.; Moscardelli, S.; Nour, I.; Amziane, S. Influence of accelerated aging on the properties of hemp concretes. Constr Build Mater 2017, 139, doi:10.1016/j.conbuildmat.2016.11.129.
- 7. Johansson, S.; Balksten, K.; Strandberg-de Bruijn, P.B. Risk for mould growth on hemp-lime at different relative humidity. In Proceedings of the BioBased Building Materials; 2022, 1.
- 8. Vasiliauskienė, D.; Balčiūnas, G.; Boris, R.; Kairytė, A.; Urbonavičius, J. The impact of microorganisms on the performance of linseed oil and tung tree oil impregnated composites made of hemp shives and corn starch. Microorganisms 2023, 11, doi:10.3390/microorganisms11020477.
- 9. Vasiliauskienė, D.; Boris, R.; Balčiūnas, G.; Kairytė, A.; Urbonavičius, J. Impact of cellulolytic fungi on biodegradation of hemp shives and corn starch-based composites with different flameretardants. Microorganisms 2022, 10, doi:10.3390/microorganisms10091830.
- 10. Arnaud, L.; Gourlay, E. Experimental study of parameters influencing mechanical properties of hemp concretes. Constr Build Mater 2012, 28, doi:10.1016/j.conbuildmat.2011.07.052.
- 11. Delhomme, F.; Hajimohammadi, A.; Almeida, A.; Jiang, C.; Moreau, D.; Gan, Y.; Wang, X.; Castel, A. Physical properties of australian hurd used as aggregate for hemp concrete. Mater Today Commun 2020, 24, doi:10.1016/j.mtcomm.2020.100986.
- 12. Kosiński, P.; Brzyski, P.; Tunkiewicz, M.; Suchorab, Z.; Wiśniewski, D.; Palczyński, P. Thermal properties of hemp shives used as insulation material in construction industry. Energies (Basel) 2022, 15, doi:10.3390/en15072461.
- 13. Brzyski, P. The influence of gum arabic admixture on the mechanical properties of lime-metakaolin paste used as binder in hemp concrete. Materials 2021, 14, doi:10.3390/ma14226775.
- 14. Brzyski, P.; Lagód, G. Physical and mechanical properties of composites based on hemp shives and lime. In Proceedings of the E3S Web of Conferences; 2018, 49.
- 15. Brzyski, P.; Widomski, M. The influence of partial replacement of hemp shives by expanded perlite on physical properties of hemp-lime composite. In Proceedings of the AIP Conference Proceedings; 2017, 1866.
- 16. Walker, R.; Pavía, S. Moisture transfer and thermal properties of hemp-lime concretes. Constr Build Mater 2014, 64, doi:10.1016/j.conbuildmat.2014.04.081.
- 17. Brzyski, P.; Suchorab, Z. Capillary uptake monitoring in lime-hemp-perlite composite using the time domain reflectometry sensing technique for moisture detection in building composites. Materials 2020, 13, doi:10.3390/ma13071677.
- 18. Strandberg-de Bruijn, P.; Johansson, P. Moisture transport properties of lime-hemp concrete determined over the complete moisture range. Biosyst Eng 2014, 122, doi:10.1016/j.biosystemseng.2014.03.001.
- 19. de Bruijn, P.B.; Jeppsson, K.H.; Sandin, K.; Nilsson, C. Mechanical properties of lime-hemp concrete containing shives and fibres. Biosyst Eng 2009, 103, doi:10.1016/j.biosystemseng.2009.02.005.
- 20. Łapka, P.; Brzyski, P.; Pietrak, K.; Cieślikiewicz, Ł.; Suchorab, Z. Hygro-thermal characterization of the hemp concrete modified with the gum arabic admixture. Constr Build Mater 2023, 368, doi:10.1016/j.conbuildmat.2023.130392.
- 21. Ventol, L.; Vendrell, M.; Giraldez, P.; Merino, L. Traditional organic additives improve lime mortars: new old materials for restoration and building natural stone fabrics. Constr Build Mater 2011, 25, doi:10.1016/j.conbuildmat.2011.03.020.
- 22. Ni, J.; Li, S.S.; Geng, X.Y. Mechanical and biodeterioration behaviours of a clayey soil strengthened with combined carrageenan and casein. Acta Geotech 2022, 17, doi:10.1007/s11440-022-01588-4.
- 23. Park, S.S.; Woo, S.W.; Jeong, S.W.; Lee, D.E. Durability and strength characteristics of casein-cemented sand with slag. Materials 2020, 13, doi:10.3390/ma13143182.
- 24. Chang, I.; Im, J.; Chung, M.K.; Cho, G.C. Bovine Casein as a new soil strengthening binder from diary wastes. Constr Build Mater 2018, 160, doi:10.1016/j.conbuildmat.2017.11.009.
- 25. Brzyski, P.; Suchorab, Z.; Łagód, G. The influence of casein protein admixture on pore size distribution and mechanical properties of limemetakaolin paste. Buildings 2021, 11, doi:10.3390/buildings11110530.
- 26. Herzog, A.; Kerschbaumer, T.; Schwarzenbrunner, R.; Barbu, M.C.; Petutschnigg, A.; Tudor, E.M. Efficiency of high-frequency pressing of spruce laminated timber bonded with casein adhesives. Polymers (Basel) 2021, 13, doi:10.3390/polym13234237.
- 27. Umemura, K.; Inoue, A.; Kawai, S. Development of new natural polymer-based wood adhesives I: dry bond strength and water resistance of konjac glucomannan, chitosan, and their composites. Journal of Wood Science 2003, 49, doi:10.1007/s10086-002-0468-8.
- 28. Pavlík, Z.; Jiřičková, M.; Černý, R.; Sobczuk, H.; Suchorab, Z. Determination of moisture diffusivity using the time domain reflectometry (TDR) method. J Build Phys 2006, 30, doi:10.1177/1744259106064356.
- 29. Futa, A.; Jastrzębska, M.; Paśnikowska-łukaszuk, M.; Wośko, E.; Suchorab, Z. Improving the calibration of surface TDR sensors for moisture evaluation of building materials using the ANCOVA method. Advances in Science and Technology Research Journal 2023, 17, doi:10.12913/22998624/172010.
- 30. Mikušová, D.; Suchorab, Z.; Paśnikowska-Łukaszuk, M.; Zaburko, J., Trník, A. Applying the machine learning method to improve calibration quality of time domain reflectometry measuring technique. Advances in Science and Technology Research Journal 2024, 18(3), doi: 10.12913/22998624/187007.
- 31. Brzyski, P.; Suchorab, Z. Physical properties of clay mortars based on insulating aggregates. In Proceedings of the AIP Conference Proceedings; 2018, 1988.
- 32. Huynh, T.P.; Bui, P.H.; Ho, N.T.; Bui, P.T. Experimental investigation on short-term properties of high-flowing fine-grained concrete applying for marine structures. Civil Engineering and Architecture 2020, 8, doi:10.13189/cea.2020.080531.
- 33. Athira, K.; Shanmugapriya, T. Investigation on effect of colloidal nano-silica on the strength and durability characteristics of red mud blended portland cement paste through tortuosity. Materiales de Construccion 2022, 72, doi:10.3989/mc.2022.01922.
- 34. Kearsley, E.P.; Wainwright, P.J. Porosity and permeability of foamed concrete. Cem Concr Res 2001, 31, doi:10.1016/S0008-8846(01)00490-2.
- 35. Dutkiewicz, J.; Krysińska-Traczyk, E.; Prazmo, Z.; Skórska, C.; Sitkowska, J. Exposure to airborne microorganisms in Polish sawmills. Annals of Agricultural and Environmental Medicine 2001, 8.
- 36. Krysinska-Traczyk, E.; Skórska, C.; Cholewa, G.; Sitkowska, J.; Milanowski, J.; Dutkiewicz, J. Exposure to airborne microorganisms in furniture factories. Annals of Agricultural and Environmental Medicine 2002, 9.
- 37. Kropacz, A.; Fojutowski, A. Colonization by fungi of wood chips stored in industrial conditions. Drewno 2014, 57, doi:10.12841/wood.1644-3985.082.04.
- 38. Sand, W. Microbial mechanisms of deterioration of inorganic substrates – a general mechanistic overview. In Proceedings of the International Biodeterioration and Biodegradation; 1997, 40.
- 39. Sanchez-Silva, M.; Rosowsky, D.V. Biodeterioration of construction materials: state of the art and future challenges. Journal of Materials in Civil Engineering 2008, 20, doi:10.1061/(asce)0899-1561(2008)20:5(352).
- 40. Gutarowska, B. Metabolic activity of moulds as a factor of building materials biodegradation. Pol J Microbiol 2010, 59, doi:10.33073/pjm-2010-018.
- 41. Brzyski, P.; Grudzińska, M.; Majerek, D. Analysis of the occurrence of thermal bridges in several variants of connections of the wall and the ground floor in construction technology with the use of a hemp-lime composite. Materials 2019, 12, doi:10.3390/ma12152392.
- 42. Rojas, J.A.; Cruz, C.; Mikán, J.F.; Villalba, L.S.; Cepero de García, M.C.; Restrepo, S. Isoenzyme characterization of proteases and amylases and partial purification of proteases from filamentous fungi causing biodeterioration of industrial paper. Int Biodeterior Biodegradation 2009, 63, doi:10.1016/j.ibiod.2008.07.009.
- 43. Flannigan, B.; Samson, R.A.; Miller, J.D. Microorganisms in home and indoor work environments: Diversity, Health Impacts, Investigation and Control: Second Edition; 2016.
- 44. de la Torre, M.A.; Gomez-Alarcon, G. Manganese and iron oxidation by fungi isolated from building stone. Microb Ecol 1994, 27, doi:10.1007/BF00165816.
- 45. de la Torre, M.A.; Gomez-Alarcon, G.; Melgarejo, P.; Saiz-Jimenez, C. Fungi in weathered sandstone from Salamanca Cathedral, Spain. Science of the Total Environment, The 1991, 107, doi:10.1016/0048-9697(91)90257-F.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-934bdbb8-1b0f-497c-9559-0ca5ba8181a9