Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Landfill leachate, a complex mixture resulting from decomposing waste, contains suspended and dissolved organic and inorganic compounds. This nutrient-rich environment facilitates the growth of diverse microbial communities that can utilize these compounds for sustenance. Rhodotorula mucilaginosa is a yeast with great potential in the field of biotechnology due to its ability to utilize diverse substrates and its strong resistance to environmental stress. This study was aimed at investigating the potential of R. mucilaginosa, a yeast strain isolated from landfill environments, for biofuel production and simultaneous pollutant reduction in leachate. Batch cultivations were conducted using leachate as the sole growth medium. Cultivation was conducted for 2, 4, 6, and 8 days to analyse the lipids from R. mucilaginosa biomass and the degradation of pollutants in the resulting leachate. Additionally, the fuel properties were determined to assess the quality of the biodiesel produced from R. mucilaginosa lipids. The obtained quality was compared with the American Society for Testing and Materials (ASTM D6751), the Indonesian National Standard (SNI 8968:2021), and the fatty acid methyl ester (FAME) derived from palm oil. Results demonstrated significant lipid accumulation by R. mucilaginosa, reaching 19% (w/w) after 144 hours (6 days) of cultivation. Gas chromatography-mass spectrometry (GC-MS) analysis revealed a FAME profile dominated by C16 and C18 fatty acids, suitable for biodiesel production. Concurrently, substantial reductions in leachate pollutant levels were observed, with decreases of 40.43% for chemical oxygen demand (COD), 86% for phosphate, 90% for ammonia, 53% for nitrate, and 64% for nitrite. These findings highlight the potential of R. mucilaginosa, isolated from landfill leachate, as a promising bioremediation agent for wastewater treatment and a sustainable source of lipids for renewable energy production.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
96--108
Opis fizyczny
Bibliogr. 49 poz., rys., tab.
Twórcy
autor
- Postgraduate School of Engineering, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
- Department of Chemical Engineering, Faculty of Engineering, Universitas Malikussaleh, Lhokseumawe, North Aceh, Indonesia
autor
- Department of Chemical Engineering, Faculty of Engineering, Universitas Syiah Kuala, Darussalam, Banda Aceh 23111, Indonesia
autor
- Department of Agricultural Products Technology, Faculty of Agriculture, Universitas Syiah Kuala, Darussalam, Banda Aceh, Indonesia
autor
- Department of Chemical Engineering, Faculty of Engineering, Universitas Syiah Kuala, Darussalam, Banda Aceh 23111, Indonesia
autor
- Department of Chemical Engineering, Faculty of Engineering, Universitas Syiah Kuala, Darussalam, Banda Aceh 23111, Indonesia
Bibliografia
- 1. Arous, F., Jaouani, A., Mechichi, T. 2019. Oleaginous microorganisms for simultaneous biodiesel production and wastewater treatment: a review. Microbial Wastewater Treatment, 153–174. https://doi.org/10.1016/B978-0-12-816809-7.00008-7
- 2. Arous, F., Triantaphyllidou, I.-E., Mechichi, T., Azabou, S., Nasri, M., Aggelis, G. 2015. Lipid accumulation in the new oleaginous yeast Debaryomyces etchellsii correlates with ascosporogenesis. Biomass and Bioenergy, 80, 307–315. https://doi.org/10.1016/j.biombioe.2015.06.019
- 3. Ayadi, I., Belghith, H., Gargouri, A., Guerfali, M. 2019. Utilization of wheat bran acid hydrolysate by Rhodotorula mucilaginosa Y-MG1 for microbial lipid production as feedstock for biodiesel synthesis. BioMed Research International, 2019. https://doi.org/10.1155/2019/3213521
- 4. Baderna, D., Maggioni, S., Boriani, E., Gemma, S., Molteni, M., Lombardo, A., Lodi, M. 2011. A combined approach to investigate the toxicity of an industrial landfill’s leachate: chemical analyses, risk assessment and in vitro assays. Environmental Research, 111(4), 603–613. https://doi.org/10.1016/j.envres.2011.01.015
- 5. Benjumea, P., Agudelo, J., Agudelo, A. 2008. Basic properties of palm oil biodiesel–diesel blends. Fuel, 87(10–11), 2069–2075. https://doi.org/10.1016/j.fuel.2007.11.004
- 6. Brar, K.K., Sarma, A.K., Aslam, M., Polikarpov, I., Chadha, B.S. 2017. Potential of oleaginous yeast Trichosporon sp., for conversion of sugarcane bagasse hydrolysate into biodiesel. Bioresource Technology, 242, 161–168. https://doi.org/10.1016/j.biortech.2017.03.155
- 7. Dasgupta, D., Sharma, T., Bhatt, A., Bandhu, S., Ghosh, D. 2017. Cultivation of oleaginous yeast Rhodotorula mucilaginosa IIPL32 in split column airlift reactor and its influence on fuel properties. Biocatalysis and Agricultural Biotechnology, 10, 308– 316. https://doi.org/10.1016/j.bcab.2017.04.002
- 8. Dey, P., Banerjee, J., Maiti, M.K. 2011. Comparative lipid profiling of two endophytic fungal isolates–Colletotrichum sp. and Alternaria sp. having potential utilities as biodiesel feedstock. Bioresource Technology, 102(10), 5815–5823. https://doi.org/10.1016/j.biortech.2011.02.064
- 9. Dourou, M., Aggeli, D., Papanikolaou, S., Aggelis, G. 2018. Critical steps in carbon metabolism affecting lipid accumulation and their regulation in oleaginous microorganisms. Applied Microbiology and Biotechnology, 102(6), 2509–2523. https://doi.org/10.1007/s00253-018-8813-z
- 10. Enshaeieh, M., Abdoli, A., Madani, M. 2018. Single cell oil (SCO) production by Rhodotorula mucilaginosa and its environmental benefits. http://hdl.handle.net/123456789/4237
- 11. Farahdiba, A.U., Warmadewanthi, I., Fransiscus, Y., Rosyidah, E., Hermana, J., Yuniarto, A. 2023. The present and proposed sustainable food waste treatment technology in Indonesia: A review. Environmental Technology & Innovation, 103256. https://doi.org/10.1016/j.eti.2023.103256
- 12. Gavrilescu, M., Demnerová, K., Aamand, J., Agathos, S., Fava, F. 2015. Emerging pollutants in the environment: present and future challenges in biomonitoring, ecological risks and bioremediation. New Biotechnology, 32(1), 147–156. https://doi.org/10.1016/j.nbt.2014.01.001
- 13. Gohain, M., Bardhan, P., Laskar, K., Sarmah, S., Mandal, M., Bora, U., Deka, D. 2020. Rhodotorula mucilaginosa: A source of heterogeneous catalyst for biodiesel production from yeast single cell oil and waste cooking oil. Renewable Energy, 160, 220– 230. https://doi.org/10.1016/j.renene.2020.06.063
- 14. Hoekman, S.K., Broch, A., Robbins, C., Ceniceros, E., Natarajan, M. 2012. Review of biodiesel composition, properties, and specifications. Renewable and Sustainable Energy Reviews, 16(1), 143–169. https://doi.org/10.1016/j.rser.2011.07.143
- 15. Irawati, W., Parhusip, A.J.N., Christian, S., Yuwono, T. 2017. The potential capability of bacteria and yeast strains isolated from Rungkut Industrial Sewage in Indonesia as a bioaccumulators and biosorbents of copper. Biodiversitas Journal of Biological Diversity, 18(3), 971–977. https://doi:10.13057/biodiv/d180315
- 16. Jarboui, R., Baati, H., Fetoui, F., Gargouri, A., Gharsallah, N., Ammar, E. 2012. Yeast performance in wastewater treatment: case study of Rhodotorula mucilaginosa. Environmental Technology, 33(8), 951–960. https://doi.org/10.1080/09593330.2011.603753
- 17. Jeong, G.-T., Park, J.-H., Park, S.-H., Park, D.-H. 2008. Estimating and improving cold filter plugging points by blending biodiesels with different fatty acid contents. Biotechnology and Bioprocess Engineering, 13, 505–510. https://doi.org/10.1007/s12257-008-0144-y
- 18. Jia, X., Xu, J., Wu, Y., Zhang, X., Du, Y., Wang, W. 2023. Isolation, identification and artificial inoculation of Rhizoctonia solani on pear during storage. Horticultural Plant Journal, 9(1), 73–76. https://doi.org/10.1016/j.hpj.2022.03.009
- 19. Kaza, S., Yao, L., Bhada-Tata, P., Van Woerden, F. 2018. What a waste 2.0: a global snapshot of solid waste management to 2050. World Bank Publications.
- 20. Knothe, G. 2009. Improving biodiesel fuel properties by modifying fatty ester composition. Energy & Environmental Science, 2(7), 759–766. https://doi: 10.1039/B903941D
- 21. Kongruang, S., Roytrakul, S., Sriariyanun, M. 2020. Renewable biodiesel production from oleaginous yeast biomass using industrial wastes. E3S Web of Conferences, 141, 3010. EDP Sciences. https://doi.org/10.1051/e3sconf/202014103010
- 22. Kurtzman, C., Fell, J.W., Boekhout, T. 2011. The yeasts: a taxonomic study. Elsevier.
- 23. Li, Z., Li, C., Cheng, P., Yu, G. 2022. Rhodotorula mucilaginosa—alternative sources of natural carotenoids, lipids, and enzymes for industrial use. Heliyon, e11505. https://doi.org/10.1016/j.heliyon.2022.e115
- 24. Liang, C.-M., Yang, C.-F., Du, J.-S. 2021. Lipid production and waste reutilization combination using yeast isolate Rhodotorula mucilaginosa LP-2. BioEnergy Research, 14(4), 1184–1195. https://doi.org/10.1007/s12155-020-10241-5
- 25. Liang, M.-H., Jiang, J.-G. 2013. Advancing oleaginous microorganisms to produce lipid via metabolic engineering technology. Progress in Lipid Research, 52(4), 395–408. https://doi.org/10.1016/j.plipres.2013.05.002
- 26. Liu, Y., Wang, Y., Liu, H., Zhang, J. 2015. Enhanced lipid production with undetoxified corncob hydrolysate by Rhodotorula glutinis using a high cell density culture strategy. Bioresource Technology, 180, 32– 39. https://doi.org/10.1016/j.biortech.2014.12.093
- 27. Matejczyk, M., Płaza, G.A., Nałęcz-Jawecki, G., Ulfig, K., Markowska-Szczupak, A. 2011 Estimation of the environmental risk posed by landfills using chemical, microbiological and cotoxicological testing of leachates. Chemosphere, 82(7), 1017–1023. https://doi.org/10.1016/j.chemosphere.2010.10.066
- 28. Miao, Z., Tian, X., Liang, W., He, Y., Wang, G. 2020. Bioconversion of corncob hydrolysate into microbial lipid by an oleaginous yeast Rhodotorula taiwanensis AM2352 for biodiesel production. Renewable Energy, 161, 91–97. https://doi.org/10.1016/j.renene.2020.07.007
- 29. Mishra, A., Medhi, K., Maheshwari, N., Srivastava, S., Thakur, I.S. 2018. Biofuel production and phycoremediation by Chlorella sp. ISTLA1 isolated from landfill site. Bioresource Technology, 253, 121–129. https://doi.org/10.1016/j.biortech.2017.12.012
- 30. Mondal, M., Goswami, S., Ghosh, A., Oinam, G., Tiwari, O.N., Das, P., Halder, G.N. 2017. Production of biodiesel from microalgae through biological carbon capture: a review. 3 Biotech, 7, 1–21. https://doi.org/10.1007/s13205-017-0727-4
- 31. Munawar, E., Fellner, J. 2013. Landfilling in Tropical Climates: Measures for Better Design and Operation. Proceeding Conference: ISWA World Congress, 7–11.
- 32. Munch, G., Sestric, R., Sparling, R., Levin, D.B., Cicek, N. 2015. Lipid production in the undercharacterized oleaginous yeasts, Rhodosporidium babjevae and Rhodosporidium diobovatum, from biodiesel-derived waste glycerol. Bioresource Technology, 185, 49–55. https://doi.org/10.1016/j.biortech.2015.02.051
- 33. Osorio-González, C.S., Gómez-Falcon, N., Sandoval-Salas, F., Saini, R., Brar, S.K., Ramírez, A.A. 2020. Production of biodiesel from castor oil: A review. Energies, 13(10), 2467. https://doi.org/10.3390/en13102467
- 34. Patel, A., Karageorgou, D., Rova, E., Katapodis, P., Rova, U., Christakopoulos, P., Matsakas, L. 2020. An overview of potential oleaginous microorganisms and their role in biodiesel and omega-3 fatty acid-based industries. Microorganisms, 8(3), 434. https://doi.org/10.3390/microorganisms8030434
- 35. Rajpert, L., Skłodowska, A., Matlakowska, R. 2013. Biotransformation of copper from Kupferschiefer black shale (Fore-Sudetic Monocline, Poland) by yeast Rhodotorula mucilaginosa LM9. Chemosphere, 91(9), 1257–1265. https://doi.org/10.1016/j.chemosphere.2013.02.022
- 36. Ruas, F.A.D., Amorim, S.S., Leão, V.A., Guerra-Sá, R. 2020. Rhodotorula mucilaginosa isolated from the manganese mine water in Minas Gerais, Brazil: potential employment for bioremediation of contaminated water. Water, Air, & Soil Pollution, 231, 1–14. https://doi.org/10.1007/s11270-020-04896-1
- 37. Silva, A.C., Dezotti, M., Sant’Anna Jr, G.L. 2004. Treatment and detoxification of a sanitary landfill leachate. Chemosphere, 55(2), 207–214. https://doi.org/10.1016/j.chemosphere.2003.10.013
- 38. Sineli, P.E., Maza, D.D., Aybar, M.J., Figueroa, L.I.C., Viñarta, S.C. 2022. Bioconversion of sugarcane molasses and waste glycerol on single cell oils for biodiesel by the red yeast Rhodotorula glutinis R4 from Antarctica. Energy Conversion and Management: X, 16, 100331. https://doi.org/10.1016/j.ecmx.2022.100331
- 39. Singh, G., Sinha, S., Kumar, K.K., Gaur, N.A., Bandyopadhyay, K.K., Paul, D. 2020. High density cultivation of oleaginous yeast isolates in “mandi”waste for enhanced lipid production using sugarcane molasses as feed. Fuel, 276, 118073. https://doi.org/10.1016/j.fuel.2020.118073
- 40. Singh, R., Kumar, A., Chandra Sharma, Y. 2019. Biodiesel production from microalgal oil using barium– calcium–zinc mixed oxide base catalyst: optimization and kinetic studies. Energy & Fuels, 33(2), 1175–1184. https://doi.org/10.1021/acs.energyfuels.8b03461
- 41. Siwina, S., Leesing, R. 2021. Bioconversion of durian (Durio zibethinus Murr.) peel hydrolysate into biodiesel by newly isolated oleaginous yeast Rhodotorula mucilaginosa KKUSY14. Renewable Energy, 163, 237–245. https://doi.org/10.1016/j.renene.2020.08.138
- 42. Soccol, C.R., Neto, C.J.D., Soccol, V.T., Sydney, E.B., da Costa, E.S.F., Medeiros, A.B.P., de Souza Vandenberghe, L.P. 2017. Pilot scale biodiesel production from microbial oil of Rhodosporidium toruloides DEBB 5533 using sugarcane juice: performance in diesel engine and preliminary economic study. Bioresource Technology, 223, 259–268. https://doi.org/10.1016/j.biortech.2016.10.055
- 43. Tomás-Pejó, E., Morales-Palomo, S., GonzálezFernández, C. 2021. Microbial lipids from organic wastes: outlook and challenges. Bioresource Technology, 323, 124612. https://doi.org/10.1016/j.biortech.2020.124612
- 44. Tsai, S.-Y., Yu, H.-T., Lin, C.-P. 2022. The potential of the oil-producing oleaginous yeast rhodotorula mucilaginosa for sustainable production of bio-oil energy. Processes, 10(2), 336. https://doi.org/10.3390/pr10020336
- 45. Tsarpali, V., Kamilari, M., Dailianis, S. 2012. Seasonal alterations of landfill leachate composition and toxic potency in semi-arid regions. Journal of Hazardous Materials, 233, 163–171. https://doi.org/10.1016/j.jhazmat.2012.07.007
- 46. Tyagi, B., Kumar, N. 2021. Bioremediation: Principles and applications in environmental management. In Bioremediation for environmental sustainability 3–28. Elsevier. https://doi.org/10.1016/B978-0-12-820524-2.00001-8
- 47. Uprety, B.K., Dalli, S.S., Rakshit, S.K. 2017. Bioconversion of crude glycerol to microbial lipid using a robust oleaginous yeast Rhodosporidium toruloides ATCC 10788 capable of growing in the presence of impurities. Energy Conversion and Management, 135, 117–128. https://doi.org/10.1016/j.enconman.2016.12.071
- 48. West, A.H., Posarac, D., Ellis, N. 2008. Assessment of four biodiesel production processes using HYSYS. Plant. Bioresource Technology, 99(14), 6587–6601. https://doi.org/10.1016/j.biortech.2007.11.046
- 49. Zhang, F., Peng, Y., Wang, S., Wang, Z., Jiang, H. 2019. Efficient step-feed partial nitrification, simultaneous Anammox and denitrification (SPNAD) equipped with real-time control parameters treating raw mature landfill leachate. Journal of Hazardous Materials, 364, 163–172. https://doi.org/10.1016/j.jhazmat.2018.09.066
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-934a7fba-b45c-43b3-87e8-191956c434d2