PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Estimation based on sequential order statistics with random removals

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Suppose that n individuals are scrutinized in an experiment. Each failure is accompanied by a fixed number of removals. The experiment terminates after r (≤ n) failures. An explicit expression for the likelihood function of the available progressive sequential order statistics (PSOS) data is proposed. Under the conditional proportional hazard rate (CPHR) model, the maximum likelihood (ML) estimates of parameters are derived. Under the CPHR model and the assumption that the baseline distribution belongs to the Weibull family of distributions, the existence and uniqueness of the ML estimates are investigated. Moreover, two general classes of lifetime distributions, as an extension of theWeibull distribution, are studied in more detail. An algorithm for generating PSOS data under the CPHR model is proposed. Finally, some concluding remarks are given.
Rocznik
Strony
81--95
Opis fizyczny
Bibliogr. 22 poz., rys.
Twórcy
autor
  • Department of Statistics, Faculty of Mathematical Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
  • Department of Statistics, Faculty of Mathematical Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
Bibliografia
  • [1] N. Balakrishnan and R. Aggarwala, Progressive Censoring: Theory, Methods, and Applications, Birkhäuser, 2000.
  • [2] N. Balakrishnan and M. Kateri, On the maximum likelihood estimation of parameters of Weibull distribution based on complete and censored data, Statist. Probab. Lett. 78 (17) (2008), pp. 2971-2975.
  • [3] N. Balakrishnan and R. A. Sandhu, A simple simulational algorithm for generating progressive type-II censored samples, Amer. Statist. 49 (2) (1995), pp. 229-230.
  • [4] U. Balasooriya, S. L. C. Saw, and V. Gadag, Progressively censored reliability sampling plans for the Weibull distribution, Technometrics 42 (2) (2000), pp. 160-167.
  • [5] E. Beutner and U. Kamps, Order restricted statistical inference for scale parameters based on sequential order statistics, J. Statist. Plann. Inference 139 (2009), pp. 2963-2969.
  • [6] Z. Chen, Statistical inference about the shape parameter of the Weibull distribution, Statist. Probab. Lett. 36 (1) (1997), pp. 85-90.
  • [7] A. C. Cohen, Maximum likelihood estimation in the Weibull distribution based on complete and on censored samples, Technometrics 7 (1965), pp. 579-588.
  • [8] E. Cramer and U. Kamps, Sequential order statistics and k-out-of-n systems with sequentially adjusted failure rates, Ann. Inst. Statist. Math. 48 (3) (1996), pp. 535-549.
  • [9] E. Cramer and U. Kamps, Estimation with sequential order statistics from exponential distributions, Metrika 53 (2001), pp. 307-324.
  • [10] E. Cramer and U. Kamps, Sequential k-out-of-n systems, in: Handbook of Statistics, Vol. 20: Advances in Reliability, N. Balakrishnan and E. Rao (Eds.), Elsevier, 2001, Chapter 12, pp. 301-372.
  • [11] E. Cramer and U. Kamps, Marginal distributions of sequential and generalized order statistics, Metrika 58 (2003), pp. 293-310.
  • [12] H. L. Harter and A. H. Moore, Maximum-likelihood estimation of the parameters of gamma and Weibull populations from complete and from censored samples, Technometrics 7 (1965), pp. 639-643.
  • [13] M. Hollander and E. A. Peña, Dynamic reliability models with conditional proportional hazards, Lifetime Data Anal. 1 (4) (1995), pp. 377-401.
  • [14] U. Kamps, A Concept of Generalized Order Statistics, Teubner, 1995.
  • [15] U. Kamps, A concept of generalized order statistics, J. Statist. Plann. Inference 48 (1995), pp. 1-23.
  • [16] J. F. Lawless, Statistical Models and Methods for Lifetime Data, second edition, Wiley, 2003.
  • [17] J. I. McCool, Inferences on Weibull percentiles and shape parameter from maximum likelihood estimates, IEEE Trans. Reliab. 19 (1970), pp. 2-9.
  • [18] R. L. Smith and J. C. Naylor, A comparison of maximum likelihood and Bayesian estimators for the three-parameter Weibull distribution, Appl. Statist. 36 (3) (1987), pp. 358-369.
  • [19] A. A. Soliman, A. Y. Al -Hossain, and M. M. Al-Harbi, Predicting observables from Weibull model based on general progressive censored data with asymmetric loss, Stat. Methodol. 8 (2011), pp. 451-461.
  • [20] D. R. Thoman, L. J. Bain, and C. E. Antle, Inferences on the parameters of the Weibull distribution, Technometrics 11 (1969), pp. 445-460.
  • [21] R. Viveros and N. Balakrishnan, Interval estimation of parameters of life from progressively censored data, Technometrics 36 (1994), pp. 84-91.
  • [22] L. A. Weissfeld and H. Schneider, Influence diagnostics for the Weibull model fit to censored data, Statist. Probab. Lett. 9 (1) (1990), pp. 67-73.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-93468f00-6dda-443b-ade6-ea9080e75706
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.