Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The useful life of dump truck tyres is crucial for optimising economic efficiency and safety in mining operations. This study employs advanced hybrid models, including a generalised regression neural network (GRNN) combined with an artificial bee colony (ABC), ant colony optimisation (ACO), and firefly algorithm (FA), to predict tyre life at Perseus Mining Ghana Limited to enhance prediction accuracy. Sensitivity analysis using simple linear regression (SLR) identified tread depth as the most influential factor, with a correlation coefficient of 0.9638. Among the models, GRNN-FA demonstrated superior performance, achieving the highest correlation coefficient (r = 0.9586) and lowest mean squared error (MSE = 0.1019), root mean squared error (RMSE = 0.3191) and, mean absolute error (MAE = 0.2761). The study highlights that improving operational factors such as floor and road conditions, payload weight, and cycle time can significantly extend the tyre life. Implementing the GRNN-FA model can optimise tyre management, reduce downtimes, and enhance operational efficiency, thereby setting a new standard for tyre life prediction in the mining industry.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
227--249
Opis fizyczny
Bibliogr. 89 poz.
Twórcy
autor
- University of Mines and Technology, Department of Mining Engineering, Ghana
autor
- University of Mines and Technology, Department of Mining Engineering, Ghana
autor
- University of Mines and Technology, Department of Mining Engineering, Ghana
Bibliografia
- [1] Meech J, Parreira J. Predicting wear and temperature of autonomous haulage truck tyres. IFAC Proc Vol (IFAC-PapersOnline) 2013;15(PART 1):142e7. https://doi.org/ 10.3182/20130825-4-US-2038.00078.
- [2] Rahimdel MJ. Residual lifetime estimation for the mining truck tyres. Proc Inst Mech Eng - Part D J Automob Eng 2023; 237(13):3232e44. https://doi.org/10.1177/09544070221121855.
- [3] Lindeque GC. A critical investigation into tyre life on an iron ore haulage system. J South Afr Inst Min Metall. 2016;116(4): 317e22. https://doi.org/10.17159/2411-9717/2016/v116n4a3.
- [4] Tannant D, Regensburg B. Guidelines for mine Haul Road design. 2001. p. 115.
- [5] Lupker HA, Montanatro F, Donadio D, Gelosa E, Vis M. Truck tyre wear assessment and prediction. In: 7th international symposium on heavy vehicle weight and dimensions delft, The Netherlands; 2002. p. 275e88.
- [6] Muro T, Hata S, Fukagawa R. Estimation for wear life of heavy dump truck tyre. In: 8th proceeding international conference on off-road vehicle and machines, Cambridge, England; 1984. p. 1089e104.
- [7] Fontaras G, Zacharof NG, Ciuffo B. Fuel consumption and CO2 emissions from passenger cars in europe-laboratory versus real-world emission. Prog Energy Combust Sci 2017; 60:97e131. https://doi.org/10.1016/j.pecs.2016.12.004.
- [8] Valentini F, Pegoretti A. End-of-Life options of tyres: a review. Adv Indust Eng Polymer Res 2022;5(4):203e13. https:// doi.org/10.1016/j.aiepr.2022.08.006.
- [9] Goryunov S, Khoreshok A, Grigoryeya N, Preis E, Alitkina O. The research of operational temperatures of dump trucks tyres. In: E3S web of conferences; 2019. p. 1e7. https://doi.org/10.1051/e3sconf/201913401014.
- [10] Wang T. Analysis on tyre wear: modelling and simulations. 2017.
- [11] Wood K. What does the tread wear on truck tyres tell a fleet manager? [Internet]. 2018 [cited 2023 Jul 12]. Available from: https://www.darratyres.com.au/what-does-the-tread-wear-on-truck-tyres-tell-a-fleet-manager/.
- [12] Kim DY, Lee S. An unusual death due to the burst of the dump truck tyre. Police Sci Res 2021;21(2):163e76.
- [13] Tomini E, Levesque M, Le J, Goode M, Acun~ a E. How tyre tock management and fitment strategy impact truck availability. CIM J 2021;12(1):25e35. https://doi.org/10.1080/ 19236026.2021.1872016.
- [14] Shakenov A, Sładkowski A, Stolpovskikh I. Haul road condition impact on tyre life of mining dump truck. Scientific Bull Nation Mining Univ 2022;6:25e9. https://doi.org/ 10.33271/nvngu/2022-6/025.
- [15] Carter RA. OTR tyre supply comes under pressure. Eng Min J 2011;212(6):40e3.
- [16] Rojek I, Jasiulewicz-Kaczmarek M, Piechowski M, Mikołajewski D. An artificial intelligence approach for improving maintenance to supervise machine failures and support their repair. Appl Sci 2023;13(8):1e16. https://doi. org/10.3390/app13084971.
- [17] Nyaaba W, Bolarinwa EO, Frimpong S. Durability prediction of an ultra-large mining truck tyre using an enhanced finite element method. Proc Inst Mech Eng, Part D: J Automob 2019;233(1):161e9. https://doi.org/10.1177/09544070187 95278.
- [18] Mars WV. Computed dependence of rubber’s fatigue behaviour on strain crystallisation. Rubber Chem Technol 2009;82(1):51e61. https://doi.org/10.5254/1.3557006.
- [19] Frimpong S, Galecki G, Li Y, Suglo R. Dump truck tyre stress simulation for extended service life. In: Transactions of the society for mining, metallurgy, and exploration, 332; 2012. p. 422e9.
- [20] Kunkyin-Saadaari F, Agadzie VK, Gyebuni R. A comparative study on the application of intelligent models in the estimation of backbreak in mine blasting operations. American Journal of Science, Engineering and Technology 2024;9(1): 1e13. https://doi.org/10.11648/j.ajset.20240901.11.
- [21] Khandelwal M. Evaluation and prediction of blast-induced ground vibration using support vector machine. Int J Rock Mech Min Sci 2010;47(3):506e16. https://doi.org/10.1016/ j.ijrmms.2010.01.007.
- [22] Zhu J, Han K, Wang S. Automobile tyre life prediction based on image processing and machine learning technology. Adv Mech Eng 2021;13(3):1e13. https://doi.org/10.1177/1687814 0211002727.
- [23] Ohadi B, Sun X, Esmaieli K, Consens MP. Predicting blast-induced outcomes using random forest models of multi-year blasting data from an open pit mine. Bull Eng Geol Environ 2020;79:329e43. 10.1007/s10064-019-01566-3.
- [24] Xie C, Cao J, Shi D. A three-dimensional non-linear dynamic numerical optimisation of the risks of stope blasting based on FOA-GRNN. Shock Vib 2021;2021(1):1e14. https:// doi.org/10.1155/2021/9981078.
- [25] Xue X, Yang X. Predicting blast-induced ground vibration using general regression neural network. J Vib Control 2014; 20(10):1512e9. https://doi.org/10.1177/1077546312474680. 2014.
- [26] Milan SG, Roozbahani A, Azar NA, Javadi S. Development of adaptive neuro-fuzzy inference systemeevolutionary algorithms hybrid models (ANFIS-EA) for prediction of optimal groundwater exploitation. J Hydrol (Amst). 2021;598:1e12. https://doi.org/10.1016/j.jhydrol.2021.126258.
- [27] Gjika E, Ferrja A, Kamberi A. A study on the efficiency of hybrid models in forecasting precipitations and water inflow Albania case study. Adv Sci Technol Eng Syst J 2019;4(1): 302e10.
- [28] Ebrahimi E, Monjezi M, Khalesi MR, Armaghani DJ. Prediction and optimisation of back-break and rock fragmentation using an artificial neural network and a bee colony algorithm. Bull Eng Geol Environ 2016;75:27e36. https:// doi.org/10.1007/s10064-015-0720-2.
- [29] Fernie M. Tyre management is crucial in mining operation: as it can lead to significant cost savings, improved safety, and increased efficient [Internet]. 2023 [cited 2023 Jul 13]. Available from: https://www.linkedin.com/pulse/tyre-management- crucial-mining-operation-can-lead-cost-mark-fernie/.
- [30] Kagogo TS. A critical evaluation of haul truck tyre performance and management system at rosing uranium mine. J South Afr Inst Min Metall. 2014;114(4):293e8.
- [31] Quartermaine J. Perseus mining increase Edikan’s inventories of mineral resources and ore reserves [Internet]. 2022 [cited 2024 Jun 24]. Available from: https://www. juniorminingnetwork.com/junior-miner-news/press-releases/508-tsx/pru/124999-perseus-increases-edikan-s-inventories-of-mineral-resources-and-ore-reserves.
- [32] Perrouty S, Ailleres L, Jessell MW, Baratoux L, Bourassa Y, Crawford B. Revised eburnean geodynamic evolution of the gold-rich Southern Ashanti Belt, Ghana, with new field and geophysical evidence of pre-tarkwaian deformations. Precambrian Res 2012;204:12e39. https://doi.org/10.1016/j.precamres.2012.01.003.
- [33] Allibone A, Teasdale J, Cameron G, Etheridge M, Uttley P, Soboh A, et al. Timing and structural controls on gold mineralisation at the bogoso gold mine, Ghana, West Africa. Econ Geol 2002;97(5):949e69. https://doi.org/10.2113/gsecongeo.97.5.949.
- [34] Wang X, Sun Y, Li S, Meng F. Hazard assessment of debris flows based on A PCA-GRNN model: a case study in Liaoning Province, China. Arabian J Geosci 2020;13:1e14. https://doi.org/10.1007/s12517-020-5136-z.
- [35] Nose-Filho K, Lotufo ADP, Minussi CR. Short-term multinodal load forecasting using a modified generalised regression neural network. IEEE Trans Power Deliv 2011;26(4): 2862e9. https://doi.org/10.1109/PTC.2011.6019432.
- [36] Monjezi M, Ahmadi M, Sheikhan M, Bahrami A, Salimi AR. Predicting blast-induced ground vibration using various types of neural networks. Soil Dynam Earthq Eng 2010; 30(11):1233e6. https://doi.org/10.1016/j.soildyn.2010.05.005.
- [37] Kisi O. River flow forecasting and estimation using different artificial neural network techniques. Nord Hydrol 2008;39(1): 27e40. https://doi.org/10.2166/nh.2008.026.
- [38] Leung MT, Chen AS, Daouk H. Forecasting exchange rates using general regression neural networks. Comput Oper Res 2000;27(11e12):1093e110. https://doi.org/10.1016/S0305-0548(99)00144-6.
- [39] Hu R, Wen S, Zeng Z, Huang T. A short-term power load forecasting model based on the generalised regression neural network with decreasing step fruit fly optimization algorithm. Neurocomputing 2017;221:24e31. https://doi.org/ 10.1016/j.neucom.2016.09.027.
- [40] Goulermas JY, Liatsis P, Zeng XJ, Cook P. Density-driven generalised regression neural networks for function approximation. IEEE Trans Neural Network 2007;18(6): 1683e96. https://doi.org/10.1109/TNN.2007.902730.
- [41] Shui PL, Shi XF, Li X, Feng T, Xia XY, Han Y. GRNN-based predictors of UHF-band sea clutter reflectivity at low grazing angle. Geosci Rem Sens Lett IEEE 2021;19:1e5. https:// doi.org/10.1109/LGRS.2021.3076842.
- [42] Casey K, Garrett A, Gay J, Montgomery L, Dozier G. An evolutionary approach for achieving scalability with generalised regression neural networks. Nat Comput 2009;8: 133e48. https://doi.org/10.1007/s11047-007-9052-x.
- [43] Azevedo BF, Rocha AMA, Pereira AI. Hybrid approaches to optimisation and machine learning methods: a systematic literature review. Mach Learn 2024:1e43. https://doi.org/ 10.1007/s10994-023-06467-x.
- [44] Izonin I, Tkachenko R, Verhun V, Zub K. An approach towards missing data management using improved GRNN-SGTM ensemble method. Eng Sci Technol, An Intern J 2021; 24(3):749e59. https://doi.org/10.1016/j.jestch.2020.10.005.
- [45] Heydari A, Garcia DA, Keynia F, Bisegna F, De Santoli L. Renewable energies generation and carbon dioxide emission forecasting in microgrids and national grids using GRNN-GWO methodology. Energy Proc 2019;159:154e9. https:// doi.org/10.1016/j.egypro.2018.12.044.
- [46] Alilou VK, Yaghmaee F. Application of GRNN neural network in non-texture image inpainting and restoration. Pattern Recogn Lett 2015;62:24e31. https://doi.org/10.1016/ j.patrec.2015.04.020.
- [47] Singh SK, Mali HS, Unune DR, Wojciechowski S, Wilczynski D. Application of generalised regression neural network and Gaussian process regression for modelling hybrid micro-electric discharge machining: a comparative study. Processes 2022;10(4). https://doi.org/10.3390/pr10040755.
- [48] Kartal S, Oral M, Ozyildirim BM. Pattern layer reduction for a generalised regression neural network by using a selforganising map. Int J Appl Math Comput Sci 2018;28(2): 411e24. https://doi.org/10.2478/amcs-2018-0031.
- [49] Specht DF. A general regression neural network. IEEE Trans Neural Network 1991;2(6):568e76.
- [50] Yang XS, He X. Firefly algorithm: recent advances and applications. Intern J Swarm Intell 2013;1(1):36e50. https:// doi.org/10.1504/IJSI.2013.055801.
- [51] Yang XS. Firefly algorithms for multimodal optimisation. In: International symposium on stochastic algorithms. Berlin, Heidelberg: Springer; 2009. p. 169e78. https://doi.org/ 10.1007/978-3-642-04944-6_14.
- [52] Farahani SM, Abshouri AA, Nasiri B, Meybodi M. A Gaussian firefly algorithm. Int J Mach Learn Comput. 2011; 1(5):448e53.
- [53] Fister I, Fister Jr I, Yang XS, Brest J. A comprehensive review of firefly algorithms. Swarm Evol Comput 2013;13:34e46. https://doi.org/10.1016/j.swevo.2013.06.001.
- [54] Altherwi A. Application of the firefly algorithm for optimal production and demand forecasting at selected industrial plant. Open J Bus Manag 2020;8(6):2451e9. https://doi.org/ 10.4236/ojbm.2020.86151.
- [55] Johari NF, Zain AM, Noorfa MH, Udin A. Firefly algorithm for optimisation problem. Appl Mech Mater 2013;421:512e7. https://doi.org/10.4028/www.scientific.net/AMM.421.512.
- [56] Eiben AE, Smit SK. Parameter tuning for configuring and analysing evolutionary algorithms. Swarm Evol Comput 2011;1(1):19e31. https://doi.org/10.1016/j.swevo.2011.02.001.
- [57] Eiben AE, Smith JE. In: Rozenberg G, editor. Introduction to evolutionary computing. Berlin, Heidelberg: Springer-Verlag; 2015. p. 294.
- [58] Pei W, Huayu G, Zheqi Z, Meibo L. A novel hybrid firefly algorithm for global optimisation. In: 2019 IEEE 4th international conference on computer and communication systems; 2019. p. 164e8. https://doi.org/10.1109/CCOMS.2019. 8821670.
- [59] Zhang L, Liu L, Yang XS, Dai Y. A novel hybrid firefly algorithm for global optimisation. PLoS One 2016;11(9):1e17. https://doi.org/10.1371/journal.pone.0163230.
- [60] Dorigo M, Birattari M, Stutzle T. Ant colony optimisation. IEEE Comput Intell Mag 2006;1(4):28e39. https://doi.org/ 10.1109/MCI.2006.329691.
- [61] Soofastaei A, Soofastaei A. In: The application of ant colony optimisation. IntechOpen; 2022. p. 1e9.
- [62] Chalissery JM, Renyard A, Gries R, Hoefele D, Alamsetti SK, Gries G. Ants sense and follow, trail pheromones of ant community members. Insects 2019;10(11):1e11. https:// doi.org/10.3390/insects10110383.
- [63] Czaczkes TJ, Grüter C, Ellis L, Wood E, Ratnieks FL. Ant foraging on complex trails: route learning and the role of trail pheromones in lasius Niger. J Exp Biol 2013;216(2):188e97. https://doi.org/10.1242/jeb.076570.
- [64] Dorigo M, Di Caro G, Gambardella LM. Ant algorithms for discrete optimisation. Artif Life 1999;5(2):137e72. https:// doi.org/10.1162/106454699568728.
- [65] Liu XJ, Yi H, Ni ZH. Application of ant colony optimisation algorithm in process planning optimisation. J Intell Manuf 2013;24:1e13. https://doi.org/10.1007/s10845-010-0407-2.
- [66] Maniezzo V, Gambardella LM, De Luigi F. Ant colony optimisation. New Optimisat Techniq Eng 2004;141:101e17. https://doi.org/10.1007/978-3-540-39930-8_5.
- [67] Dorigo M, Stützle T. Ant colony optimisation: overview and recent advances. Springer International Publishing; 2019. p. 311e51. https://doi.org/10.1007/978-3-319-91086-4_10.
- [68] Afshar A, Massoumi F, Afshar A, Marin~o MA. State of the art review of ant colony optimisation applications in water resource management. Water Resour Manag 2015;29: 3891e904. https://doi.org/10.1007/s11269-015-1016-9.
- [69] Sun J, Xiong SW, Guo FM. A new pheromone updating strategy in ant colony optimization. In: Proceedings of 2004 international conference on machine learning and cybernetics; 2004. p. 620e5. https://doi.org/10.1109/ICMLC.2004. 1380766.
- [70] Jalali MR, Afshar A, Marino MA. Multi-colony ant algorithm for continuous multi-reservior operation optimisation problem. Water Resour Manag 2007;21:1429e47. https://doi.org/ 10.1007/s11269-006-9092-5.
- [71] Mayet AM, Ijyas VT, Bhutto JK, Guerrero JWG, Shukla NK, Eftekhari-Zadeh E, et al. Using ant colony optimisation as a method for selecting features to improve the accuracy of measuring the thickness of scale in an intelligent control system. Processes 2023;11(6):1e19. https://doi.org/10.3390/ pr11061621.
- [72] Karaboga D. An idea based on honey bee swarm for numerical optimisation. Technical Report-tr06 2005;200:1e10.
- [73] Karaboga D, Basturk B. A powerful and efficient algorithm for numerical function optimisation: artificial bee colony (ABC) algorithm. J Global Optimisat 2007;39:459e71. https:// doi.org/10.1007/s10898-007-9149-x.
- [74] Karaboga D, Akay B. A comparative study of artificial bee colony algorithm. Appl Math Comput 2009;214(1):108e32. https://doi.org/10.1016/j.amc.2009.03.090.
- [75] Dey A, Bhattacharyya S, Dey S, Konar D, Platos J, Snasel V, et al. A review of quantum-inspired metaheuristic algorithms for automatic clustering. Mathematics 2023;11(9): 1e44. https://doi.org/10.3390/math11092018.
- [76] Pham DT, Ghanbarzadeh A, Koq E, Otri S, Rahim S, Zaidi M. The bees algorithm-A novel tool for complex optimisation problems. In: Intelligent production machines and systems. Elsevier Science Ltd; 2006. p. 454e9. https://doi.org/10.1016/ B978-008045157-2/50081-X.
- [77] Akay B, Karaboga D. A modified artificial bee colony algorithm for real-parameter optimisation. Inf Sci 2012;192: 120e42. https://doi.org/10.1016/j.ins.2010.07.015.
- [78] Yan Y, Zhang Y, Gao F. Dynamic artificial bee colony algorithm for multi-parameters optimisation of support vector machine-based soft-margin classifier. EURASIP J Appl Signal Process 2012. 2012:1e13. https://doi.org/10.1186/1687-6180-2012-160.
- [79] Diwold K, Aderhold A, Scheidler A, Middendorf M. Performance evaluation of artificial bee colony optimisation and new selection schemes. Memet Comput 2011;3:149e62. https://doi.org/10.1007/s12293-011-0065-8.
- [80] Banharnsakun A, Achalakul T, Sirinaovakul B. The best-so-far selection in artificial bee colony algorithm. Appl Soft Comput 2011;11(2):2888e901. https://doi.org/10.1016/j.asoc. 2010.11.025.
- [81] Gao WF, Liu SY. A modified artificial bee colony algorithm. Comput Oper Res 2012;39(3):687e97. https://doi.org/10.1016/ j.cor.2011.06.007.
- [82] Kuhn M, Johnson K. Applied predictive modelling springer. IOP Publishing; 2013. p. 615. https://doi.org/10.1016/ j.catena.2022.106485.
- [83] Ying X. An overview of overfitting and its solutions. In: Journal of physics: conference series; 2019. p. 1e7. https:// doi.org/10.1088/1742-6596/1168/2/022022.
- [84] Khana S. A comprehensive guide to train-validation split [Internet]. 2024 [cited 2024 Jul 19]. Available from: https:// www.analyticsvidhya.com/blog/2023/11/train-test-validation-split/.
- [85] Brownlee J. Train-test split for evaluating machine learning algorithm [Internet]. 2020 [cited 2024 Jul 19]. Available from: https://machinelearningmastery.com/train-test-split-for-evaluating-machine-learning-algorithms/.
- [86] Fisher H, Adriaansen D, Kalb C, Fillmore D, Jensen T, Goodrich L, et al. The METplotpy version 2.1.0 user’s guide [Internet]. 2023 [cited 2024 Jul 26]. Available from: https:// metplotpy.readthedocs.io/en/latest/Users_Guide/taylor_ diagram.html.
- [87] Taylor KE. Summarising multiple aspects of model performance in a single diagram. J Geophys Res Atmos 2001; 106(D7):7183e92. https://doi.org/10.1029/2000.JD900719.
- [88] Pianosi F, Beven K, Freer J, Hall JW, Rougier J, Stephenson DB, et al. Sensitivity analysis of environmental models: a systematic review with practical workflow. Environ Model Software 2016;79:214e32. https://doi.org/10.1016/ j.envsoft.2016.02.008.
- [89] Helton JC, Johnson JD, Sallaberry CJ, Storlie CB. Survey of sampling-based methods for uncertainty and sensitivity analysis. Reliab Eng Syst Saf 2006;91(10e11):1175e209. https://doi.org/10.1016/j.ress.2005.11.017.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9342d398-5217-4325-b64e-3c6e1dccf2d1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.