PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Magnetospectroscopy of double HgTe/CdHgTe QWs with inverted band structure in high magnetic fields up to 30 T

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Magnetoabsorption in far and mid IR ranges in double HgTe/CdHgTe quantum wells with inverted band structure has been studied in high magnetic fields up to 30 T. Numerous intraband and interband transitions have been revealed in the spectra and interpreted within axial 8 × 8 k·p model. Splitting of dominant magnetoabsorption lines resulting from optical transitions from hole-like zero-mode Landau level has been discovered and discussed in terms of a built-in electric field and collective phenomena.
Twórcy
autor
  • Institute for Physics of Microstructures – Branch of Federal Research Ceenter “Instititute of Applied Physics of Russian Academy of Sciences”, 603950 Nizhny Novgorod, Russia
  • Laboratoire National des Champs Magnétiques Intenses, LNCMI - CNRS - UGA - UPS - INSA - EMFL, 38042 Grenoble, France
  • Institute for Physics of Microstructures – Branch of Federal Research Ceenter “Instititute of Applied Physics of Russian Academy of Sciences”, 603950 Nizhny Novgorod, Russia
  • Faculty of Physics, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
  • Institute for Physics of Microstructures – Branch of Federal Research Ceenter “Instititute of Applied Physics of Russian Academy of Sciences”, 603950 Nizhny Novgorod, Russia
  • Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia
  • Institute for Physics of Microstructures – Branch of Federal Research Ceenter “Instititute of Applied Physics of Russian Academy of Sciences”, 603950 Nizhny Novgorod, Russia
  • Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia
  • Institute of Semiconductor Physics, Siberian Branch RAS, 630090 Novosibirsk, Russia
  • Institute of Semiconductor Physics, Siberian Branch RAS, 630090 Novosibirsk, Russia
  • Institute for Physics of Microstructures – Branch of Federal Research Ceenter “Instititute of Applied Physics of Russian Academy of Sciences”, 603950 Nizhny Novgorod, Russia
  • Laboratoire Charles Coulomb (L2C), UMR CNR S 5221, GIS - TERALAB, Université Montpellier II, F34095 Montpellier, France
autor
  • Laboratoire Charles Coulomb (L2C), UMR CNR S 5221, GIS - TERALAB, Université Montpellier II, F34095 Montpellier, France
autor
  • Laboratoire National des Champs Magnétiques Intenses, LNCMI - CNRS - UGA - UPS - INSA - EMFL, 38042 Grenoble, France
autor
  • Laboratoire National des Champs Magnétiques Intenses, LNCMI - CNRS - UGA - UPS - INSA - EMFL, 38042 Grenoble, France
autor
  • Laboratoire National des Champs Magnétiques Intenses, LNCMI - CNRS - UGA - UPS - INSA - EMFL, 38042 Grenoble, France
  • Institute of Physics, Charles University, 12116 Prague, Czech Republic
  • Institute for Physics of Microstructures – Branch of Federal Research Ceenter “Instititute of Applied Physics of Russian Academy of Sciences”, 603950 Nizhny Novgorod, Russia
  • Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia
Bibliografia
  • [1] A. Rogalski, HgCdTe infrared detector material: history, status and outlook, Rep. Prog. Phys. 68 (2005) 2267–2336, http://dx.doi.org/10.1088/0034-4885/68/10/R01.
  • [2] B.A. Bernevig, T.L. Hughes, S.-C. Zhang, Quantum spin hall effect and topological phase transition in HgTe quantum wells, Science 314 (2006) 1757–1761, http://dx.doi.org/10.1126/science.1133734.
  • [3] M. Konig, S. Wiedmann, C. Brune, A. Roth, H. Buhmann, L.W. Molenkamp, X.-L. Qi, S.-C. Zhang, Quantum spin hall insulator state in HgTe quantum wells, Science 318 (2007) 766–770, http://dx.doi.org/10.1126/science.1148047.
  • [4] M. Schultz, U. Merkt, A. Sonntag, U. Rössler, R. Winkler, T. Colin, P. Helgesen, T. Skauli, S. Løvold, Crossing of conduction- and valence-subband Landau levels in an inverted HgTe/CdTe quantum well, Phys. Rev. B 57 (1998) 14772–14775, http://dx.doi.org/10.1103/Phys Rev B. 57.14772.
  • [5] M. Orlita, K. Masztalerz, C. Faugeras, M. Potemski, E.G. Novik, C. Brune, H. Buhmann, L.W. Molenkamp, Fine structure of zero-mode Landau levels in HgTe/HgxCd1-xTe quantum wells, Phys. Rev. B 83 (2011) 115307, http://dx.doi.org/10.1103/Phys Rev B. 83. 115307.
  • [6] M. Zholudev, F. Teppe, M. Orlita, C. Consejo, J. Torres, N. Dyakonova, M. Czapkiewicz, J. Wrobel, G. Grabecki, N. Mikhailov, S. Dvoretskii, A. Ikonnikov, K. Spirin, V. Aleshkin, V. Gavrilenko, W. Knap, Magnetospectroscopy of two-dimensional HgTe-based topological insulators around the critical thickness, Phys. Rev. B 86 (2012) 205420, http://dx.doi.org/10.1103/ PhysRevB.86.205420.
  • [7] M.S. Zholudev, F. Teppe, S.V. Morozov, M. Orlita, C. Consejo, S. Ruffenach, W. Knap, V.I. Gavrilenko, S.A. Dvoretskii, N.N. Mikhailov, Anticrossing of Landau levels in HgTe/CdHgTe (013) quantum wells with an inverted band structure, JETP Lett. 100 (2015) 790–794, http://dx.doi.org/10.1134/S0021364014240175.
  • [8] L.S. Bovkun, A.V. Ikonnikov, V.Ya. Aleshkin, K.E. Spirin, V.I. Gavrilenko, N.N. Mikhailov, S.A. Dvoretskii, F. Teppe, B.A. Piot, M. Potemski, M. Orlita, Landau level spectroscopy of valence bands in HgTe quantum wells: Effects of symmetry lowering, J. Phys. Condens. Matter 31 (2019) 45501, http://dx.doi.org/10.1088/1361-648X/aafdf0.
  • [9] A.M. Kadykov, S.S. Krishtopenko, B. Jouault, W. Desrat, W. Knap, S. Ruffenach, C. Consejo, J. Torres, S.V. Morozov, N.N. Mikhailov, S.A. Dvoretskii, F. Teppe, Temperature-induced topological phase transition in hgte quantum wells, Phys. Rev. Lett. 120 (2018) 086401, http://dx.doi.org/10.1103/PhysRevLett.20.086401.
  • [10] B. Büttner, C.X. Liu, G. Tkachov, E.G. Novik, C. Brüne, H. Buhmann, E.M. Hankiewicz, P. Recher, B. Trauzettel, S.C. Zhang, L.W. Molenkamp, Single valley Dirac fermions in zero-gap HgTe quantum wells, Nat. Phys. 7 (2011) 418–422, http://dx.doi.org/10.1038/nphys1914.
  • [11] S.S. Krishtopenko, W. Knap, F. Teppe, Phase transitions in two tunnel-coupled HgTe quantum wells: bilayer graphene analogy and beyond, Sci. Rep. 6 (2016) 30755, http://dx.doi.org/10.1038/srep30755.
  • [12] L.S. Bovkun, S.S. Krishtopenko, A.V. Ikonnikov, V.Ya. Aleshkin, A.M. Kadykov, S. Ruffenach, C. Consejo, F. Teppe, W. Knap, M. Orlita, B. Piot, M. Potemski, N.N. Mikhailov, S.A. Dvoretskii, V.I. Gavrilenko, Magnetospectroscopy of double HgTe/CdHgTe quantum wells, Semiconductors 50 (2016) 1532–1538, http://dx.doi.org/10.1134/S1063782616110063.
  • [13] L.S. Bovkun, A.V. Ikonnikov, V.Ya. Aleshkin, S.S. Krishtopenko, N.N. Mikhailov, S.A. Dvoretskii, M. Potemski, B. Piot, M. Orlita, V.I. Gavrilenko, Polarization-sensitive fourier-transform spectroscopy of HgTe/CdHgTe quantum wells in the far infrared range in a magnetic field, JETP Lett. 108 (2018) 329–334, http://dx.doi.org/10.1134/S0021364018170058.
  • [14] M. Marcinkiewicz, S.S. Krishtopenko, S. Ruffenach, C. Consejo, D. But, A.M. Kadykov, A.M. Fadeev, S.V. Morozov, N.N. Michailov, S.A. Dvoretskii, V.I. Gavrilenko, W. Knap, F. Teppe, THz magnetospectroscopy of double HgTe quantum well, IEEE Xplore: 41st International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) (2016), http://dx.doi.org/10.1109/IRMMW-THz.2016.7758790.
  • [15] M.V. Yakunin, S.S. Krishtopenko, S.M. Podgornykh, M.R. Popov, V.N. Neverov, N.N. Mikhailov, S.A. Dvoretsky, HgTe/CdHgTe double quantum well with a spectrum of bilayer graphene and peculiarities of its magnetotransport, JETP Lett. 104 (2016) 403–410, http://dx.doi.org/10.1134/S0021364016180132.
  • [16] M.V. Yakunin, S.S. Krishtopenko, S.M. Podgornykh, M.R. Popov, V.N. Neverov, B. Jouault, W. Desrat, F. Teppe, S.A. Dvoretsky, N.N. Mikhailov, Unconventional Reentrant Quantum Hall Effect in a HgTe/CdHgTe Double Quantum Well, 2018, arXiv:1811.06791v1.
  • [17] S. Dvoretsky, N. Mikhailov, Y. Sidorov, V. Shvets, S. Danilov, B. Wittman, S. Ganichev, Growth of HgTe quantum wells for IR to THz detectors, J. Electron. Mater. 39 (2010) 918–923, http://dx.doi.org/10.1007/s11664-010-1191-7.
  • [18] A.V. Ikonnikov, M.S. Zholudev, K.E. Spirin, A.A. Lastovkin, K.V. Maremyanin, V.Ya. Aleshkin, V.I. Gavrilenko, O. Drachenko, M. Helm, J. Wosnitza, M. Goiran, N.N. Mikhailov, S.A. Dvoretskii, F. Teppe, N. Diakonova, C. Consejo, B. Chenaud, W. Knap, Cyclotron resonance and interband optical transitions in HgTe/CdTe(013) quantum well heterostructures, Semicond. Sci. Technol. 26 (2011) 125011, http://dx.doi.org/10.1088/0268-1242/26/12/125011.
  • [19] K.E. Spirin, D.M. Gaponova, K.V. Maremyanin, V.V. Rumyantsev, V.I. Gavrilenko, N.N. Mikhailov, S.A. Dvoretsky, Bipolar persistent photoconductivity effects in HgTe/CdHgTe (013) double quantum well heterostructures, Semiconductors 52 (2018) 1586, http://dx.doi.org/10.1134/ S1063782618120230.
  • [20] E.G. Novik, A. Pfeuffer-Jeschke, T. Jungwirth, V. Latussek, C.R. Becker, G. Landwehr, H. Buhmann, L.W. Molenkamp, Band structure of semimagnetic Hg1−yMnyTe quantum wells, Phys. Rev. B 72 (2005), 035321, http://dx.doi.org/10.1103/PhysRevB.72.035321.
  • [21] A. Ikonnikov, S. Krishtopenko, V. Gavrilenko, Yu. Sadofyev, Yu. Vasilyev, M. Orlita, W. Knap, Splitting of cyclotron resonance line in InAs/AlSb QW heterostructures in high magnetic fields: effects of electron-electron and electron-phonon interaction, J. Low Temp. Phys. 159 (2010) 197–202, http:// dx.doi.org/10.1007/s10909-009-0151-1.
  • [22] S.S. Krishtopenko, A.V. Ikonnikov, M. Orlita, Yu.G. Sadofyev, M. Goiran, F. Teppe, W. Knap, V.I. Gavrilenko, Effect of electron-electron interaction on cyclotron resonance in high-mobility InAs/AlSb quantum wells, J. Appl. Phys. 117 (2015), 112813, http://dx.doi.org/10.1063/1.4913927.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-933f9c0f-0077-49b9-94b0-f114ea9a7770
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.