Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this study, HCl and H2SO4 were used to compare the best conditions for producing glucosamine from the dry chitin of shrimp shells. The results showed that for HCl hydrolysis, the most favored conditions were 12 M, 80° C, 2 hours, and a chitin-to-acid volume ratio of 1:20, whereas, forH2SO4 hydrolysis, the most favored conditions were 6 M, 9°C, 5 hours, and a chitin to acid volume ratio of 1:20. HCl produced pured glucosamine with a higher yield than H2SO4. Additionally, our findings indicated that glucosamine could be detected using a UV detector with a weak signal, whereas we recommended using an RI detector for a comparably stronger signal. Our production maximum yield of 283.9 ± 13.8 mg Gln g–1 chitin from HCl hydrolysis was comparable to that of other studies, with a comparison between using HCl and H2SO4 being highlighted.
Czasopismo
Rocznik
Tom
Strony
8--17
Opis fizyczny
Bibliogr. 68 poz., rys., tab.
Twórcy
- Department of Biology, School of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand
autor
- Department of Biology, School of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand
autor
- Department of Biology, School of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand
autor
- Department of Biology, School of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand
autor
- Department of Biology, School of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand
autor
- Department of Biology, School of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand
autor
- Department of Biology, School of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand
- Department of Biology, School of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand
- Bioenergy Research Unit, School of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand
Bibliografia
- 1. Jain, T., Kumar, H. & Dutta, P.K. (2016). D-Glucosamine and N-Acetyl D-Glucosamine: Their Potential Use as Regenerative Medicine. In P. K. Dutta (Ed.), Chitin and Chitosan for Regenerative Medicine (pp. 279–295). Springer.
- 2. Sampoorna, M., Mahender, M. & Bhavani, S.V. (2020). ORTHOLORD TABLETS: A Blend of Natural Ingredients Provides Nutritional Support for Joint Health. Asian J. Appl. Sci. Technol. 4(2), 17–36. DOI: 10.38177/AJAST.2020.4204.
- 3. Kantor, E.D., Lampe, J.W., Navarro, S.L., Song, X., Milne, G.L. & White, E. (2014). Associations between glucosamine and chondroitin supplement use and biomarkers of systemic inflammation. J. Altern. Complement. Med. 20(6), 479–485. DOI: 10.1089/acm.2013.0323.
- 4. Wu, S., Dai, X., Shilong, F., Zhu, M., Shen, X., Zhang, K. & Li, S. (2018). Antimicrobial and antioxidant capacity of glucosamine-zinc (II) complex via non-enzymatic browning reaction. Food Sci. Biotechnol. 27(1), 1–7. DOI: 10.1007/s10068-017-0192-1.
- 5. Shekhar, S., Sharma, R., Sharma, S., Sharma, B., Sarkar, A. & Jain, P. (2020). An exploration of electrocatalytic analysis and antibacterial efficacy of electrically conductive poly (D-glucosamine)/graphene oxide bionanohybrid. Carbohydr. Polym. 240, 1–13. DOI: 10.1016/j.carbpol.2020.116242.
- 6. Chesnokov, V., Gong, B., Sun, C. & Itakura, K. (2014). Anti-cancer activity of glucosamine through inhibition of N-linked glycosylation. Cancer Cell Int. 14(1), 1–10. DOI: 10.1186/1475-2867-14-45.
- 7. Saengnipanthkul, S., Waikakul, S., Rojanasthien, S., Totemchokchyakarn, K., Srinkapaibulaya, A., Cheh Chin, T., Mai Hong, N., Bruyère, O., Cooper, C. & Reginster, J.Y. (2019). Differentiation of patented crystalline glucosamine sulfate from other glucosamine preparations will optimize osteoarthritis treatment. Int. J. Rheum. Dis., 22(3), 376–385. DOI: 10.1111/1756-185X.13068.
- 8. Zahedipour, F., Dalirfardouei, R., Karimi, G. & Jamialahmadi, K. (2017). Molecular mechanisms of anticancer effects of Glucosamine. Biomed. Pharmacother. 95, 1051–1058. DOI: 10.1016/j.biopha.2017.08.122.
- 9. Towheed, T., Maxwell, L., Anastassiades, T.P., Shea, B., Houpt, J., Welch, V., Hochberg, M.C. & Wells, G.A. (2005). Glucosamine therapy for treating osteoarthritis. Cochrane Database Syst. Rev. (2), 1–58. DOI: 10.1002/14651858.CD002946.pub2.
- 10. Altman, R.D. (2009). Glucosamine therapy for knee osteoarthritis: pharmacokinetic considerations. Expert Rev. Clin. Pharmacol. 2(4), 359–371. DOI: 10.1586/ecp.09.17.
- 11. Amarase, C., Tanavalee, A., Jumroonwong, W., Tanavalee, C., Tantavisut, S. & Ngarmukos, S. (2018). Patients’ Real Life Experience in Using Glucosamine Sulfate for Treatment of Knee Osteoarthritis Under The Comptroller General’s Department (CGD) Reimbursement Protocol: A Preliminary Report. J. Med. Assoc. Thai., 101(3), 223–230.
- 12. Meulyzer, M., Vachon, P., Beaudry, F., Vinardell, T., Richard, H., Beauchamp, G. & Laverty, S. (2008). Comparison of pharmacokinetics of glucosamine and synovial fluid levels following administration of glucosamine sulphate or glucosa-mine hydrochloride. Osteoarthr. Cartil. 16(9), 973–979. DOI: 10.1016/j.joca.2008.01.006.
- 13. Bruyere, O., Pavelka, K., Rovati, L.C., Deroisy, R., Olejarova, M., Gatterova, J., Giacovelli, G. & Reginster, J.-Y. (2004). Glucosamine sulfate reduces osteoarthritis progression in postmenopausal women with knee osteoarthritis: evidence from two 3-year studies. Menopause, 11(2), 138–143. DOI: 10.1097/01.gme.0000087983.28957.5d.
- 14. Tenti, S., Giordano, N., Mondanelli, N., Giannotti, S., Maheu, E. & Fioravanti, A. (2020). A retrospective observational study of glucosamine sulfate in addition to conventional therapy in hand osteoarthritis patients compared to conventional treatment alone. Aging. Clin. Exp. Res., 32, 1161–1172. DOI: 10.1007/s40520-019-01305-4.
- 15. Veronese, N., Ecarnot, F., Cheleschi, S., Fioravanti, A. & Maggi, S. (2022). Possible synergic action of non-steroidal anti-inflammatory drugs and glucosamine sulfate for the treatment of knee osteoarthritis: a scoping review. BMC Musculoskelet. Disord. 23(1), 1–9. DOI: 10.1186/s12891-022-06046-6.
- 16. Mojarrad, J.S., Nemati, M., Valizadeh, H., Ansarin, M. & Bourbour, S. (2007). Preparation of Glucosamine from Exoskeleton of Shrimp and Predicting Production Yield by Response Surface Methodology. J. Agric. Food Chem. 55, 2246–2250. DOI: 10.1021/jf062983a.
- 17. Elieh Ali Komi, D., Sharma, L. & Dela Cruz, C.S. (2018). Chitin and its effects on inflammatory and immune responses. Clin. Rev. Allergy Immunol. 54(2), 213–223. DOI: 10.1007/s12016-017-8600-0.
- 18. Novikov, V.Y. (2004). Acid Hydrolysis of Chitin and Chitosan. Russ. J. Appl. Chem. 77(3), 484–487. DOI: 10.1023/B:RJAC.0000031297.24742.b9.
- 19. Rojas, J., Madrigal, J. & Ortiz, J. (2015). Effect of Acid Hydrolysis on Tableting Properties of Chitin Obtained from Shrimp Heads. Trop. J. Pharm. Res., 14(7), 1137–1144. DOI: 10.4314/tjpr.v14i7.3.
- 20. Munjal, S. & Singh, A. (2020). The Arrhenius Acid and Base Theory. In S. Ambrish (Ed.), Corrosion. IntechOpen.
- 21. Lin, Y. (2023). Whole-process optimization for industrial production of glucosamine sulfate sodium chloride based on QbD concept. Chin. J. Chem. Eng. 54, 153–161. DOI: 10.1016/j.cjche.2022.03.025.
- 22. Ramırez, M.G., Avelizapa, L.R., Avelizapa, N.R. & Camarillo, R.C. (2004). Colloidal chitin stained with Remazol Brilliant Blue R®, a useful substrate to select chitinolytic microorganisms and to evaluate chitinases. J. Microbiol. Methods, 56(2), 213–219. DOI: 10.1016/j.mimet.2003.10.011.
- 23. Swartz, M. (2010). HPLC detectors: a brief review. J. Liq. Chromatogr. Relat. Technol. 33(9–12), 1130–1150. DOI: 10.1080/10826076.2010.484356.
- 24. Yan, X. (2014). High performance liquid chromatography for carbohydrate analysis. In Z. Yuegang (Ed.), High-Performance Liquid Chromatography (HPLC): Principles, Practices and Procedures (pp. 1–20). Nova Science.
- 25. Fish Information & Services. (2018). Shrimp exporters face prons and cons this year. https://seafood.media/fis/worldnews/worldnews.asp?l=e&id=100412&ndb=1
- 26. Sowcharoensuk, C. (2019). Industry Outlook 2019–2021: Processed Seafood. Krungsri Research. Retrieved June 27, 2022, from https://www.krungsri.com/en/research/industry/industry-outlook/Food-Beverage/Processed-Seafood/IO/io-frocessed-seafood-20-th
- 27. Bassig, R.A., Obinque, A.V., Nebres, V.T., Delos Santos, V.H., Peralta, D.M. & Madrid, A.J.J. (2022). Black tiger shrimp processing waste can be converted into a value-added powder. Responsible Seafood Advocate. Retrieved June 27, 2022, from https://www.globalseafood.org/advocate/black-tiger-shrimp-processing-waste-can-be-converted-into-a-value-added-powder/.
- 28. Benavente, M., Arias, S., Moreno, L. & Martínez, J. (2015). Production of glucosamine hydrochloride from crustacean shell. J. Pharm. Pharmacol. 3(1), 20–26. DOI: 10.17265/2328-2150/2015.01.003.
- 29. Miller, G.L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31(3), 426–428. DOI: 10.1021/ac60147a030.
- 30. Magaña, A.A., Wrobel, K., Escobosa, A.R.C. & Wrobel, K. (2014). Fast determination of glucosamine in pharmaceutical formulations by high performance liquid chromatography without pre-column derivatization. Acta Univ. 24(2), 16–22. DOI: 10.15174/au.2014.717.
- 31. Donzelli, B.G.G., Ostroff, G. & Harman, G.E. (2003). Enhanced enzymatic hydrolysis of langostino shell chitin with mixtures of enzymes from bacterial and fungal sources. Carbohydr. Res. 338(18), 1823–1833. DOI: 10.1016/S0008-6215(03)00269-6.
- 32. Chang, H., Chen, Y. & Tan, F. (2011). Antioxidative properties of a chitosan–glucose Maillard reaction product and its effect on pork qualities during refrigerated storage. Food Chem., 124(2), 589–595. DOI: 10.1016/j.foodchem.2010.06.080.
- 33. Choi, Y.J., & Shin, Y.C. (2000). Microbial enzymes for the production of glucosamine and N-acetylglucosamine from chitinous biomass. Proceedings of the Korean Society for Applied Microbiology Conference.
- 34. Gandhi, N. & Laidler, J.K. (2002). Preparation of glucosamine hydrochloride. In Alberta Research Council Inc. (Ed.). Washington, DC, USA: United States patent US 6,486,307.
- 35. Martin Xavier, K. & Ramachandran, K. (2006). Standardization of Optimum Conditions for the Production of Glucosamine Hydrochiloride from Chitin Central Institute of Fisheries Technology].
- 36. Zhang, P. & Sutheerawattananonda, M. (2020). Kinetic models for glucosamine production by acid hydrolysis of chitin in five mushrooms. Int. J. Chem. Eng., 2020, 1-8. DOI: 10.1155/2020/5084036.
- 37. Shī, X.W., Shī, M., Wú, M.Y. & Shī, L.K. (2014). Glucosamine sulfate production method. In L. Yangzhou Rixing Bio-Tech Co. (Ed.). China: CN103509063A.
- 38. Hu, R., Lin, L., Liu, T., Ouyang, P., He, B., & Liu, S. (2008). Reducing sugar content in hemicellulose hydrolysate by DNS method: a revisit. J. Biobased Mater. Bio. 2(2), 156–161. DOI: 10.1166/jbmb.2008.306.
- 39. Jain, A., Jain, R. & Jain, S. (2020). Quantitative Analysis of Reducing Sugars by 3, 5-Dinitrosalicylic Acid (DNSA Method). In Basic Techniques in Biochemistry, Microbiology and Molecular Biology: Principles and Techniques (pp. 181–183). DOI: 10.1007/978-1-4939-9861-6_43.
- 40. Rivers, D.B., Gracheck, S.J., Woodford, L.C. & Emert, G.H. (1984). Limitations of the NNS assay for reducing sugars from saccharified lignocellulosics [Trichoderma reesei]. Biotechnol. Bioeng. 26(7), 800–802. DOI: 10.1002/bit.260260727.
- 41. Tihomirova, K., Dalecka, B. & Mezule, L. (2016). Application of conventional HPLC RI technique for sugar analysis in hydrolysed hay. Agron. Res. 14(5), 1713–1719.
- 42. Deshavath, N.N., Mukherjee, G., Goud, V.V., Veeranki, V.D. & Sastri, C.V. (2020). Pitfalls in the 3, 5-dinitrosalicylic acid (DNS) assay for the reducing sugars: Interference of furfural and 5-hydroxymethylfurfural. Int. J. Biol. Macromol. 156, 180–185. DOI: 10.1016/j.ijbiomac.2020.04.045.
- 43. Kazakevich, Y., McBrien, M. & LoBrutto, R. (2007). Computer-Assisted HPLC and Knowledge Management. In HPLC for Pharmaceutical Scientists (pp. 503–532). John Wiley & Sons. DOI: 10.1002/9780470087954.ch10.
- 44. Schwald, W., Chan, M., Breuil, C. & Saddler, J. (1988). Comparison of HPLC and colorimetric methods for measuring cellulolytic activity. Appl. Microbiol. Biotechnol., 28, 398–403. DOI: 10.1007/BF00268203.
- 45. Hasnaoui, N., Jbir, R., Mars, M., Trifi, M., Kamal-Eldin, A., Melgarejo, P. & Hernandez, F. (2011). Organic acids, sugars, and anthocyanins contents in juices of Tunisian pomegranate fruits. Int. J. Food Prop. 14(4), 741–757. DOI: 10.1080/10942910903383438.
- 46. Sims, A. (1995). HPLC analysis of sugars in foods containing salt. J. Agric. Food Chem., 43(2), 377–380. DOI: 10.1021/jf00050a022.
- 47. Holc, D., Pruss, A. & Komorowska-Kaufman, M. (2018). The possibility of using UV absorbance measurements to interpret the results of organic matter removal in the biofiltration process. Rocz. Ochr. Śr. 20, 326–341.
- 48. Uchiho, Y., Goto, Y., Kamahori, M., Aota, T., Morisaki, A., Hosen, Y. & Koda, K. (2015). Far-ultraviolet absorbance detection of sugars and peptides by high-performance liquid chromatography. J. Chromatogr. A, 1424, 86–91. DOI: 10.1016/j.chroma.2015.11.006.
- 49. Jalaludin, I. & Kim, J. (2021). Comparison of ultra-violet and refractive index detections in the HPLC analysis of sugars. Food Chem. 365(130514), 1–8. DOI: 10.1016/j.foodchem.2021.130514.
- 50. Aghazadeh-Habashi, A., Sattari, S., Pasutto, F. & Jamali, F. (2002). High performance liquid chromatographic determination of glucosamine in rat plasma. J. Pharm. Sci. 5(2), 176–180.
- 51. Kosman, V., Karlina, M., Pozharitskaya, O., Shikov, A. & Makarov, V. (2017). HPLC determination of glucosamine hydrochloride and chondroitin sulfate, weakly absorbing in the near UV region, in various buffer media. J. Anal. Chem. 72(8), 879–885. DOI: 10.1134/S106193481708007X.
- 52. Russell, A.S., Aghazadeh-Habashi, A. & Jamali, F. (2002). Active ingredient consistency of commercially available glucosamine sulfate products. J. Rheumatol. 29(11), 2407–2409.
- 53. El-Saharty, Y.S. & Bary, A.A. (2002). High-performance liquid chromatographic determination of neutraceuticals, glucosamine sulphate and chitosan, in raw materials and dosage forms. Anal. Chim. Acta, 462(1), 125–131. DOI: 10.1016/S0003-2670(02)00279-9.
- 54. Mohammadi, M., Zamani, A. & Karimi, K. (2012). Determination of glucosamine in fungal cell walls by high-performance liquid chromatography (HPLC). J. Agric. Food Chem., 60(42), 10511–10515. DOI: 10.1021/jf303488w.
- 55. Way, W.K., Gibson, K.G. & Breite, A.G. (2000). Determination of glucosamine in nutritional supplements by reversed-phase ion-pairing HPLC. J. Liq. Chromatogr. Related. Technol. 23(18), 2861–2871. DOI: 10.1081/JLC-100101238.
- 56. Shao, Y., Alluri, R., Mummert, M., Koetter, U. & Lech, S. (2004). A stability-indicating HPLC method for the determination of glucosamine in pharmaceutical formulations. J. Pharm. Biomed. Anal. 35(3), 625–631. DOI: 10.1016/j.jpba.2004.01.021.
- 57. Bertuzzi, D.L., Becher, T.B., Capreti, N.M., Amorim, J., Jurberg, I.D., Megiatto Jr, J.D. & Ornelas, C. (2018). General Protocol to Obtain D-Glucosamine from Biomass Residues: Shrimp Shells, Cicada Sloughs and Cockroaches. Global Chall. 2(11), 1–6. DOI: 10.1002/gch2.201800046.
- 58. Novikov, V.Y. & Ivanov, A. (1997). Synthesis of D (+)-glucosamine hydrochloride. Russ. J. Appl. Chem., 70(9), 1467–1470.
- 59. Smets, R. & Van Der Borght, M. (2021). Enhancing the specificity of chitin determinations through glucosamine analysis via ultra-performance LC-MS. Anal. Bioanal. Chem. 413, 3119–3130. DOI: 10.1007/s00216-021-03252-4.
- 60. Putri, A.K., Kartosentono, S. & Sugijanto, N.E.N. (2019). Isolation of glucosamine hcl from scylla paramamosain and determination by HPLC. J. Teknol. 81(5), 1–8. DOI: 10.11113/jt.v81.13416.
- 61. Islam, M., Masum, S., Rahman, M. & Shaikh, A. (2011). Preparation of glucosamine hydrochloride from indigenous shrimp processing waste. Bangladesh J. Sci. Ind. Res., 46(3), 375–378. DOI: 10.3329/bjsir.v46i3.9046.
- 62. Akpuaka, M.U. & Esimai, B.G. (2021). Isolation and Characterization of Chitin and Chitosan from the Biomass of Nigerian Shrimp Shells and Conversion to Glucosamine. Int. J. Res. Sci. Eng. 2(7), 181–187. https://www.journals.grdpublications.com/index.php/ijprse/article/view/347.
- 63. Padman, A.J., Henderson, J., Hodgson, S. & Rahman, P.K. (2014). Biomediated synthesis of silver nanoparticles using Exiguobacterium mexicanum. Biotechnol. Lett. 36, 2079–2084. DOI: 10.1007/s10529-014-1579-1.
- 64. Chen, X., Liu, Y., Kerton, F. M. & Yan, N. (2015). Conversion of chitin and N-acetyl-d-glucosamine into a N-containing furan derivative in ionic liquids. Rsc Adv. 5(26), 20073–20080. DOI: 10.1039/C5RA00382B.
- 65. Telange, D.R., Bhagat, S.B., Patil, A.T., Umekar, M.J., Pethe, A.M., Raut, N.A. & Dave, V. S. (2019). Glucosamine HCl-based solid dispersions to enhance the biopharmaceutical properties of acyclovir. J. Excip. Food Chem. 10(3), 65–81.
- 66. Sun, X.-F., Sun, R., Fowler, P. & Baird, M. S. (2005). Extraction and characterization of original lignin and hemicelluloses from wheat straw. J. Agric. Food Chem. 53(4), 860–870. DOI: 10.1021/jf040456q.
- 67. Yu, S., Zang, H., Chen, S., Jiang, Y., Yan, B. & Cheng, B. (2016). Efficient conversion of chitin biomass into 5-hydroxymethylfurfural over metal salts catalysts in dimethyl sulfoxide-water mixture under hydrothermal conditions. Polym. Degrad. Stab., 134, 105–114. DOI: 10.1016/j.polymdegradstab.2016.09.035.
- 68. Sibi, G., Dhananjaya, K., Ravikumar, K., Mallesha, H., Venkatesha, R., Dwijendra, T., Bhusal, K., Gowda, N. & Gowda, K. (2013). Preparation of glucosamine hydrochloride from crustacean shell waste and it’s quantitation by RP-HPLC. Am. Eurasian. J. Sci. Res. 8(2), 63–67. DOI: 10.5829/idosi.aejsr.2013.8.2.7381.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9336f7b8-2f05-4be7-bf79-7eb76f06f9b8