PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparative analysis of natural nanosilica versus commercial nanosilica on compressive strength and durability of high-performance concrete

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study provides a comparative analysis of natural nanosilica (NSn), which is an extract of natural silica sand processed into nanosilica with commercial nanosilica (NSc) derived from semiconductor industrial waste, in 80 MPa high performance concrete (HPC). The percentage of using nanosilica is (3%, 5%, 10%, 15%) by weight of cement used directly and combined with 5% silica fume. Analysis was carried out through compressive strength test, durability through permeability test, rapid chloride penetration test (RCPT), and microstructure test through scanning electron microscopy (SEM). The results of the analysis show that natural nanosilica is equivalent to commercial nanosilica, in applications it is better to use silica fume incorporation. The optimum percentage of using NSn10% and (SF) 5%, while 5% NSc and 5% SF, in these proportions shows the best compressive strength and durability. It’s just that the use of natural nanosilika is 5% more than commercial nanosilika. The benefit of this research is that natural materials such as silica sand with high SiO2 content, can be processed into nanosilica as an advanced material, which can be used as an eco-friendly construction material.
Rocznik
Strony
49--63
Opis fizyczny
Bibliogr. 48 poz., il., tab.
Twórcy
  • Pancasila Univesity, Faculty of Civil Engineering, Jagakarsa, South Jakarta, Indonesia
  • Ton Duc Thang University, Sustainable Development in Civil Engineering Research Group (SDCE), Hồ Chí Minh, Vietnam
autor
  • Pancasila Univesity, Faculty of Civil Engineering, Jagakarsa, South Jakarta, Indonesia
  • Pancasila Univesity, Faculty of Civil Engineering, Jagakarsa, South Jakarta, Indonesia
autor
  • Pancasila Univesity, Faculty of Civil Engineering, Jagakarsa, South Jakarta, Indonesia
  • Pancasila Univesity, Faculty of Civil Engineering, Jagakarsa, South Jakarta, Indonesia
autor
  • Pancasila Univesity, Faculty of Civil Engineering, Jagakarsa, South Jakarta, Indonesia
Bibliografia
  • [1] P.J.M. Monteiro, S.A. Miller, and A. Horvath, “Towards sustainable concrete”, Nature Materials, vol. 16, no. 7, pp. 698-699, 2017, doi: 10.1038/nmat4930.
  • [2] A. Naqi and J. Jang, “Recent progress in green cement technology utilizing low-carbon emission fuels and raw materials: a review”, Sustainability, vol. 11, no. 2, art. no. 537, 2019, doi: 10.3390/su11020537.
  • [3] M.S. Imbabi, C. Carrigan, and S. McKenna, “Trends and developments in green cement and concrete technology”, International Journal of Sustainable Built Environment, vol. 1, no. 2, pp. 194-216, 2012, doi: 10.1016/j.ijsbe.2013.05.001.
  • [4] A. Mohammed, W. Mahmood, and K. Ghafor, “Shear stress limit, rheological properties and compressive strength of cement-based grout modified with polymers”, Journal of Building Pathology and Rehabilitation, vol. 5, no. 1, art. no. 3, 2020, doi: 10.1007/s41024-019-0069-1.
  • [5] I. Amato, “Green cement: concrete solutions”, Nature, vol. 494, pp. 300-301, 2013, doi: 10.1038/494300a.
  • [6] R. Feiz, J. Ammenberg, L. Baas, M. Eklund, A. Helgstrand, and R. Marshall, “Improving the CO2 performance of cement, part I: utilizing life-cycle assessment and key performance indicators to assess development within the cement industry”, Journal of Cleaner Production, vol. 98, pp. 272-281, 2015, doi: 10.1016/j.jclepro.2014.01.083.
  • [7] L. Barcelo, J. Kline, G. Walenta, and E. Gartner, “Cement and carbon emissions”, Materials and Structures, vol. 47, no. 6, pp. 1055-1065, doi: 10.1617/s11527-013-0114-5.
  • [8] H. Biricik and N. Sarier, “Comparative study of the characteristics of nano silica - silica fume - and fly ash - incorporated cement mortars”, Materials Research, vol. 17, no. 3, pp. 570-582, 2014, doi: 10.1590/S1516-14392014005000054.
  • [9] Y. Qing, Z. Zenan, K. Deyu, and C. Rongshen, “Influence of nano-SiO2 addition on properties of hardened cement paste as compared with silica fume”, Construction Building and Materials, vol. 21, no. 3, pp. 539-545, 2007, doi: 10.1016/j.conbuildmat.2005.09.001.
  • [10] J. Tobón, O. Restrepo, and J. Payá, “Comparative analysis of performance of portland cement blended with nanosilica and silica fume”, Dyna (Medellin), vol. 77, no. 163, pp. 37-46, 2010.
  • [11] D.B. Warheit, “How meaningful are the results of nanotoxicity studies in the absence of adequate material characterization”, Toxicological Sciences, vol. 101, no. 2, pp. 183-185, 2008, doi: 10.1093/toxsci/kfm279.
  • [12] G. Thomas and K. Rangaswamy, “Dynamic soil properties of nanoparticles and bioenzyme treated soft clay”, Soil Dynamics and Earthquake Engineering, vol. 137, art. no. 106324, 2020, doi: 10.1016/j.soildyn.2020.106324.
  • [13] Y. Huang and L. Wang, “Experimental studies on nanomaterials for soil improvement: a review”, Environmental Earth Sciences, vol. 75, no. 6, art. no. 497, 2016, doi: 10.1007/s12665-015-5118-8.
  • [14] Saurav, “Application of nanotechnology in building materials”, International Journal of Engineering Research and Applications (IJERA), vol. 2, no. 5, pp. 1077-1082, 2012.
  • [15] K. Sobolev, I. Flores, R. Hermosillo, and L. M. Torres-Martínez, “Nanomaterials and nanotechnology for high-performance cement composites”, ACI Materials Journal, vol. 254, pp. 93-120, 2008.
  • [16] M. Khanzadi, M. Tadayon, H. Sepehri, and M. Sepehri, “Influence of nano-silica particles on mechanical properties and permeability of concrete”, in Second International Conference on Sustainable Construction Materials and Technologies. 2010.
  • [17] J. Schoepfer and A. Maji, “An investigation into the effect of silicon dioxide particle size on the strength of concrete”, ACI Special Publication, Symposium Paper, vol. 267, pp. 45-58, 2009, doi: 10.14359/51663282.
  • [18] A. Naji Givi, S. Abdul Rashid, F.N.A. Aziz, and M.A.M. Salleh, “Experimental investigation of the size effects of SiO2 nano-particles on the mechanical properties of binary blended concrete”, Composites Part B: Engineering, vol. 41, no. 8, pp. 673-677, 2010, doi: 10.1016/j.compositesb.2010.08.003.
  • [19] M. Collepardi, J. Olagot, R. Troli, F. Simonelli, and S. Collepardi, “Combination of silica fume, fly ash and amorphous nano-silica in superplasticized high-performance”, Materials Science Engineering, 2004.
  • [20] G.M. Habeeb, J.M. Jeabory, and M.H. Majeed, “Sustainable performance of reactive powder concrete by using nano meta kaolin”, Journal of Engineering and Sustainable Development, vol. 22, no. 2, pp. 96-106, 2018.
  • [21] M. Amin and K. Abu el-hassan, “Effect of using different types of nano materials on mechanical properties of high strength concrete”, Construction Building and Materials, vol. 80, pp. 116-124, 2015, doi: 10.1016/j.conbuildmat.2014.12.075.
  • [22] J. Siwiński, A. Szcześniak, B. Nasiłowska, Z. Mierczyk, K.Kubiak, and A. Stolarsky, “Effect of the mix composition with superplasticizer amixture on mechanical properties of high-strength concrete based on reactive powders”, Archives of Civil Engineering, vol. 68, no. 4, pp. 77-95, 2022, doi: 10.24425/ace.2022.143027.
  • [23] Standard specification for portland cement. 2022.
  • [24] J. Bi, B. Hariandja, I. Imran, and I. Pane, “Material development of nano silica Indonesia for concrete mix”, Advanced Materials Research, vol. 450-451, pp. 277-280, 2012, doi: 10.4028/www.scientific.net/AMR.450-451.277.
  • [25] ASTM C109/C109M Standard test method for compressive strength of hydraulic cement. 2016.
  • [26] DIN 1048 Part 5 Concrete harden determination of the depth of penetration of water under pressure. 1991.
  • [27] “ASTM C 1202 Electrical indication of concrete’s ability to resist chloride ion penetration”, Annual Book of American Society for Testing Materials, vol. 4.02, 2000.
  • [28] M.R. Arefi, M.R. Javaheri, E. Mollaahmadi, H. Zare, B. Abdollahi, and M. Eskandari, “Silica nanoparticle size effect on mechanical properties and microstructure of cement mortar”, Journal of American Science, vol. 7, no. 10, pp. 231-238, 2011.
  • [29] M. Nili, A. Ehsani, and K. Shabani, “Influence of nano-SiO2 and microsilica on concrete performance”, presented at Second International Conference on Sustainable Construction Materials and Technologies, 2010.
  • [30] H. Elkady, M.I. Serag, and M.S. Elfeky, “Effect of nano silica de-agglomeration, and methods of adding superplasticizer on the compressive strength, and workability of nano silica concrete”, Civil and Environmental Research, vol. 3, pp. 2222-2863, 2013.
  • [31] F.U.A. Shaikh, S.W.M. Supit, and P.K. Sarker, “A study on the effect of nano silica on compressive strength of high volume fly ash mortars and concretes”, Materials and Design, vol. 60, pp. 433-442, 2014, doi: 10.1016/j.matdes.2014.04.025.
  • [32] R. Yu, P. Spiesz, and H.J.H. Brouwers, “Effect of nano-silica on the hydration and microstructure development of ultra high performance concrete (UHPC) with a low binder amount”, Construction and Building Material, vol. 65, pp. 140-150, 2014, doi: 10.1016/j.conbuildmat.2014.04.063.
  • [33] M.A. Mosaberpanah, O. Erenb, and A.R. Tarassoly, “The effect of nano-silica and waste glass powder on mechanical, rheological, and shrinkage properties of UHPC using response surface methodology”, Journal of Materials Research and Technology, vol. 8, no. 1, pp. 804-811, 2019, doi: 10.1016/j.jmrt.2018.06.011.
  • [34] M. Berra, et al., “Effects of nanosilica addition on workability and compressive strength of Portland cement pastes”, Construction Building Materials, vol. 35, pp. 666-675, 2012, doi: 10.1016/j.conbuildmat.2012.04.132.
  • [35] A. Ehsani, M. Nili, and K. Shaabani, “Effect of nanosilica on the compressive strength development and water absorption properties of cement paste and concrete containing Fly Ash”, KSCE Journal of Civil Engineering, vol. 21, no. 5, pp. 1854-1865, 2017, doi: 10.1007/s12205-016-0853-2.
  • [36] P. Hou, S. Kawashima, K. Wang, D.J. Corr, J. Qian, and S.P. Shah, “Effects of colloidal nanosilica on rheological and mechanical properties of fly ash-cement mortar”, Cement and Concrete Composites, vol. 35, no. 1, pp. 12-22, 2013, doi: 10.1016/j.cemconcomp.2012.08.027.
  • [37] H. Du, S. Du, and X. Liu, “Durability performances of concrete with nano-silica”, Construction and Building Materials, vol. 73, pp. 705-712, 2014, doi: 10.1016/j.conbuildmat.2014.10.014.
  • [38] J.-X. Lu and C.S. Poon, “Improvement of early-age properties for glass-cement mortar by adding nanosilica”, Cement and Concrete Composites, vol. 89, pp. 18-30, 2018, doi: 10.1016/j.cemconcomp.2018.02.010.
  • [39] R.S. Chen and Q. Ye, “Research on the comparison of properties of hardened cement paste between nano-SiO2 and silica fume added”, Concrete, vol. 1, pp. 7-10, 2022.
  • [40] G. Li, “Properties of high-volume fly ash concrete incorporating nano-SiO2”, Cement and Concrete Research, vol. 34, no. 6, pp. 1043-1049, 2004, doi: 10.1016/j.cemconres.2003.11.013.
  • [41] H.-B. Tran and V.T.-A. Phan, “The effects of nano SiO2 and silica Fume on the properties of concrete”, Archives of Civil Engineering, vol. 68, no. 2, pp. 391-407, 2022, doi: 10.24425/ace.2022.140649.
  • [42] T.-C. Ling and C.-S. Poon, “Use of phase change materials for thermal energy storage in concrete: an overview”, Construction Building Materials, vol. 46, pp. 55-62, 2013, doi: 10.1016/j.conbuildmat.2013.04.031.
  • [43] P.S. Deb, P.K. Sarker, and S. Barbhuiya, “Sorptivity and acid resistance of ambient-cured geopolymer mortars containing nano-silica”, Cement and Concrete Composite, vol. 72, pp. 235-245, 2016, doi: 10.1016/j.cemconcomp.2016.06.017.
  • [44] M. Choolaei, A.M. Rashidi, M. Ardjmand, A. Yadegari, and H. Soltanian, “The effect of nanosilica on the physical properties of oil well cement”, Materials Science and Engineering: A, vol. 538, pp. 288-294, 2012, doi: 10.1016/j.msea.2012.01.045.
  • [45] M.H. Mahmoud and M.T. Bassuoni, “Performance of concrete with alkali-activated materials and nanosilica in acidic environments”, Journal of Materials in Civil Engineering, vol. 31, no. 3, 2019, doi: 10.1061/(ASCE)MT.1943-5533.0002635.
  • [46] T. Oh, B. Chun, S.K. Lee, W. Lee, N. Banthia, and D.Y. Yoo, “Substitutive effect of nano-SiO2 for silica fume in ultra-high-performance concrete on fiber pull-out behavior”, Journal of Materials Research and Technology, vol. 20, pp. 1993-2007, 2022, doi: 10.1016/j.jmrt.2022.08.013.
  • [47] X. Yang, J. Liu, H. Li, and Q. Ren, “Performance and ITZ of pervious concrete modified by vinyl acetate and ethylene copolymer dispersible powder”, Construction and Building Materials, vol. 235, art. no. 117532, 2020, doi: 10.1016/j.conbuildmat.2019.117532.
  • [48] Y. Jeong, W.S. Yum, D. Jeon, and J.E. Oh, “Strength development and microstructural characteristics of barium hydroxide-activated ground granulated blast furnace slag”, Cement and Concrete Composites, vol. 79, pp. 34-44, 2017, doi: 10.1016/j.cemconcomp.2017.01.013.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-93360b96-0af7-4972-a6a8-3e163bb226ee
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.