PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Buckling analysis of composite conical shells reinforced by agglomerated functionally graded carbon nanotube

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study primary objective is to analyze the effect of agglomeration of carbon nanotubes on the buckling behavior of functionally graded carbon nanotube-reinforced composite conical shells (FG-CNTCS). Considering the first-order shear deformation theory, the differential equations of buckling behavior are obtained. Subsequently, the buckling load was derived utilizing Galerkin methods. A parametric study is established to consider the influence of characteristic parameters on the buckling behavior of the FG-CNTCS. The results reveal that agglomeration of CNTs substantially reduces the buckling load. Considering that, the effect of high volume fractions of carbon nanotubes on increasing buckling load is overly inconsiderable, it is suggested to use low volume fractions of nanoparticles in producing this type of nanocomposites, which reduces the probability of agglomeration phenomenon and also cut down the manufacturing costs.
Rocznik
Strony
art. no. e132
Opis fizyczny
Bibliogr. 41 poz., rys., tab., wykr.
Twórcy
autor
  • Mechanical Engineering Department, Shahid Chamran University of Ahvaz, Ahvaz, Iran
  • Mechanical Engineering Department, Shahid Chamran University of Ahvaz, Ahvaz, Iran
  • Mechanical Engineering Department, Shahid Chamran University of Ahvaz, Ahvaz, Iran
Bibliografia
  • 1. Charchi N, Li Y, Huber M, Kwizera EA, Huang X, Argyropoulos C, Hoang T. Small mode volume plasmonic film-coupled nanostar resonators. Nanoscale Adv. 2020;2(6):2397-403.
  • 2. Jafari Gukeh M, Moitra S, Ibrahim AN, Derrible S, Megaridis CM. Machine learning prediction of TiO2-coating wettability tuned via UV exposure. ACS Appl Mater Interfaces. 2021;13(38):46171-9.
  • 3. Rezaee M, Maleki VA. An analytical solution for vibration analysis of carbon nanotube conveying viscose fluid embedded in visco-elastic medium. Proc Inst Mech Eng C J Mech Eng Sci. 2015;229(4):644-50.
  • 4. Kaabipour S, Hemmati S. A review on the green and sustainable synthesis of silver nanoparticles and one-dimensional silver nanostructures. Beilstein J Nanotechnol. 2021;12(1):102-36.
  • 5. Maleki FK, Nasution MK, Gok MS, Maleki VA. An experimental investigation on mechanical properties of Fe2O3 microparticles reinforced polypropylene. J Market Res. 2022;16:229-37.
  • 6. Rostamijavanani A. Dynamic buckling of cylindrical composite panels under axial compressions and lateral external pressures. J Fail Anal Prev. 2021;21(1):97-106.
  • 7. SamimiBehbahan A, Noghrehabadi A, Wong CP, Pop I, Behbahani-Nejad M. Investigation of enclosure aspect ratio effects on melting heat transfer characteristics of metal foam/phase change material composites. Int J Numer Methods Heat Fluid Flow. 2019;29(9):2994-3011.
  • 8. Kiani Y. Buckling of functionally graded graphene reinforced conical shells under external pressure in thermal environment. Compos B Eng. 2019;156:128-37.
  • 9. Jam J, Kiani Y. Buckling of pressurized functionally graded carbon nanotube reinforced conical shells. Compos Struct. 2015;125:586-95.
  • 10. Hajmohammad MH, Azizkhani MB, Kolahchi R. Multiphase nanocomposite viscoelastic laminated conical shells subjected to magneto-hygrothermal loads: dynamic buckling analysis. Int J Mech Sci. 2018;137:205-13.
  • 11. Sofiyev AH, Tornabene F, Dimitri R, Kuruoglu N. Buckling behavior of FG-CNT reinforced composite conical shells subjected to a combined loading. Nanomaterials. 2020;10(3):419-32.
  • 12. Alijani A, Darvizeh M, Darvizeh A, Ansari R. Development of a semi-analytical nonlinear finite element formulation for cylindrical shells. Proc Inst Mech Eng C J Mech Eng Sci. 2014;228(2):199-217.
  • 13. Ansari R, Torabi J, Faghih Shojaei M. Free vibration analysis of embedded functionally graded carbon nanotube-reinforced composite conical/cylindrical shells and annular plates using a numerical approach. J Vib Control. 2018;24(6):1123-44.
  • 14. Chakraborty S, Dey T, Kumar R. Stability and vibration analysis of CNT-reinforced functionally graded laminated composite cylindrical shell panels using semi-analytical approach. Compos B Eng. 2019;168:1-14.
  • 15. Ansari R, Torabi J, Hasrati E. Postbuckling analysis of axially-loaded functionally graded GPL-reinforced composite conical shells. Thin-Wall Struct. 2020;148: 106594.
  • 16. Shenas AG, Malekzadeh P, Ziaee S. Vibration of triangular functionally graded carbon nanotubes reinforced composite plates with elastically restrained edges in thermal environment. Iran J Sci Technol Trans Mech Eng. 2019;43(1):653-78.
  • 17. Nguyen LB, Nguyen NV, Thai CH, Ferreira A, Nguyen-Xuan H. An isogeometric Bezier finite element analysis for piezoelectric FG porous plates reinforced by graphene platelets. Compos Struct. 2019;214:227-45.
  • 18. Shokri-Oojghaz R, Moradi-Dastjerdi R, Mohammadi H, Behdinan K. Stress distributions in nanocomposite sandwich cylinders reinforced by aggregated carbon nanotube. Polym Compos. 2019;40(S2):E1918-27.
  • 19. Tahouneh V. Vibrational analysis of sandwich sectorial plates with functionally graded sheets reinforced by aggregated carbon nanotube. J Sandwich Struct Mater. 2020;22(5):1496-541.
  • 20. Borjalilou V, Taati E, Ahmadian MT. Bending, buckling and free vibration of nonlocal FG-carbon nanotube-reinforced composite nanobeams: exact solutions. SN Appl Sci. 2019;1(11):1-15.
  • 21. Liew K, Alibeigloo A. Predicting bucking and vibration behaviors of functionally graded carbon nanotube reinforced composite cylindrical panels with three-dimensional flexibilities. Compos Struct. 2021;256: 113039.
  • 22. Zarei M, Rahimi GH. Buckling behavior of grid stiffened composite conical shells subjected to the lateral pressure. Proc Inst Mech Eng Part C J Mech Eng Sci. 2022;236(5):2522-35.
  • 23. Taati E, Borjalilou V, Fallah AF, Ahmadian MT. On size-dependent nonlinear free vibration of carbon nanotube-reinforced beams based on the nonlocal elasticity theory: perturbation technique. Mech Based Design Struct Mach. 2020;2020(3):1-23.
  • 24. Huang Y, Karami B, Shahsavari D, Tounsi A. Static stability analysis of carbon nanotube reinforced polymeric composite doubly curved micro-shell panels. Arch Civ Mech Eng. 2021;21(4):1-15.
  • 25. Fu T, Wu X, Xiao Z, Chen Z. Dynamic instability analysis of FG-CNTRC laminated conical shells surrounded by elastic foundations within FSDT. Eur J Mech A/Solids. 2021;85:12-34.
  • 26. Reddy AB, Ram KS. Buckling of functionally graded carbon nanotube reinforced composite cylindrical shell panel with a cutout under uniaxial compression. Mater Today Proc. 2022;49:1865-9.
  • 27. Kebede Kassa M, Babu Arumugam A. Bending response analysis of a laminated, tapered, curved, composite panel made from an agglomerated and wavy MWCNT-glass fiber-polymer hybrid. Trans Can Soc Mech Eng. 2022;46(1):1-29.
  • 28. Rubel RI, Ali MH, Jafor MA, Alam MM. Carbon nanotubes agglomeration in reinforced composites: a review. AIMS Mater Sci. 2019;6(5):756-80.
  • 29. Meguid S, Sun Y. On the tensile and shear strength of nano-reinforced composite interfaces. Mater Des. 2004;25(4):289-96.
  • 30. Kumar P, Srinivas J. Elastic and thermal property studies of CNT reinforced epoxy composite with waviness, agglomeration and interphase effects. Int J Mater Eng Innov. 2018;9(2):158-77.
  • 31. Wang T, Song B, Qiao K, Huang Y, Wang L. Effect of dimensions and agglomerations of carbon nanotubes on synchronous enhancement of mechanical and damping properties of epoxy nanocomposites. Nanomaterials. 2018;8(12):996-1013.
  • 32. Maghsoudlou MA, Barbaz Isfahani R, Saber-Samandari S, Sadighi M. Effect of interphase, curvature and agglomeration of SWCNTs on mechanical properties of polymer-based nanocomposites: experimental and numerical investigations. Compos Part B Eng. 2019;175:107119.
  • 33. Shen H-S. Postbuckling of nanotube-reinforced composite cylindrical shells in thermal environments Part I: axially-loaded shells. Compos Struct. 2011;93(8):2096-108.
  • 34. Bhagavathi Kandy S, Simon GP, Cheng W, Zank J, Saito K, Bhattacharyya AR. Effect of organic modification on multiwalled carbon nanotube dispersions in highly concentrated emulsions. ACS Omega. 2019;4(4):6647-59.
  • 35. Stephan C, Nguyen T, De La Chapelle ML, Lefrant S, Journet C, Bernier P. Characterization of singlewalled carbon nanotubes-PMMA composites. Synth Met. 2000;108(2):139-49.
  • 36. Shi D-L, Feng X-Q, Huang YY, Hwang K-C, Gao H. The effect of nanotube waviness and agglomeration on the elastic property of carbon nanotube-reinforced composites. J Eng Mater Technol. 2004;126(3):250-7.
  • 37. Garcia-Macias E, Guzman CF, Flores EIS, Castro-Triguero R. Multiscale modeling of the elastic moduli of CNT-reinforced polymers and fitting of efficiency parameters for the use of the extended rule-of-mixtures. Compos B Eng. 2019;159:114-31.
  • 38. Shadmehri F, Hoa S, Hojjati M. Buckling of conical composite shells. Compos Struct. 2012;94(2):787-92.
  • 39. Mahani RB, Eyvazian A, Musharavati F, Sebaey TA, Talebizadehsardari P. Thermal buckling of laminated nano-composite conical shell reinforced with graphene platelets. Thin-Wall Struct. 2020;155:34-56.
  • 40. Sofiyev A, Kuruoglu N, Turkmen M. Buckling of FGM hybrid truncated conical shells subjected to hydrostatic pressure. Thin-Wall Struct. 2009;47(1):61-72.
  • 41. Singer J. The effect of axial constraint on the instability of thin circular cylindrical shells under uniform axial compression. Int J Mech Sci. 1962;4(3):253-8.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9335f977-a3ee-4e9c-a81e-e91b903cf24f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.