Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A novel energetic material was fabricated by filling porous carbon with 1,3,5-trinitro-1,3,5-triazinane (RDX) via the ultrasonic stirring method. Characterization (TEM, BET, XRD, FTIR, etc.) was performed to determine the micromorphology, crystal structure, and specific surface area. TEM images indicated that the RDX particles were homogeneously distributed in the channels of the porous carbon, FTIR spectra and the XRD curve of the C/RDX composite exhibited the combined characteristics of porous carbon and RDX. The BET test data also confirmed this situation. The thermal decomposition kinetics and thermodynamics of the C/RDX nanocomposite energetic material were investigated at various heating rates (5, 10, 15, and 20 K·min⁻¹). The test results showed that the thermal decomposition temperature and the critical temperature of thermal explosion were lower than for RDX alone by 46.8 and 40.69 ℃, respectively. The activation energy of the C/RDX composite was lower than those of raw RDX and a C/RDX physical mixture, indicating that the C/RDX composite exhibited high thermolysis activity.
Słowa kluczowe
Rocznik
Tom
Strony
284--301
Opis fizyczny
Bibliogr. 34 poz., rys., tab., wykr.
Twórcy
autor
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210014, China
autor
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210014, China
autor
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210014, China
autor
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210014, China
autor
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210014, China
autor
- Nanjing Momentum Material Technology Co., Ltd., Nanjing, 211200, China
Bibliografia
- [1] Van der Heijden, A.E.D.M.; Bouma, R.H.B.; van der Steen, A.C.; Fischer, H.R. Application and Characterization of Nanomaterials in Energetic Compositions. MRS Online Proc. Libr. 2003, 800(1): 191-208; https://doi.org/10.1557/PROC800-AA5.6.
- [2] Puszynski, J. Processing and Characterization of Aluminum-based Nanothermites. J. Therm. Anal. Calorim. 2009, 96(3): 677-685; https://doi.org/10.1007/s10973-009-0037-0.
- [3] Sreekumar, P.; Jin, O.Y.; Hoon, H.H. Nanoenergetic Composites with Fluoropolymers: Transition from Powders to Structures. Molecules 2022, 27(19): 6598-6598; https://doi.org/10.3390/MOLECULES27196598.
- [4] DeVolder, M.F.L.; Tawfick, S.H.; Baughman, R.H.; Hart, A.J. Carbon Nanotubes: Present and Future Commercial Applications. Science 2013, 339(6119): 535-539; https://doi.org/10.1126/science.1222453.
- [5] Ge, S.; Lan, F.; Yu, F.; Yu, J. Applications of Graphene and Related Nanomaterials in Analytical Chemistry. New J. Chem. 2015, 39(4): 2380-2395.
- [6] Zhai, Y.; Zhu, Z.; Dong, S. Carbon‐Based Nanostructures for Advanced Catalysis. ChemCatChem 2015, 7(18): 2806-2815; https://doi.org/10.1002/cctc.201500323.
- [7] Zhang, M.; Zhao, F.; Yang, Y.; Li, H.; An, T.; Zhang, J. The Effect of rGO-Fe₂O₃ Nanocomposites with Spherical, Hollow and Fusiform Microstructures on the Thermal Decomposition of TKX-50. J. Phys. Chem. Solids 2021, 153: 109982; https://doi.org/10.1016/J.JPCS.2021.109982.
- [8] Nguyen, T.D.; Nguyen, M.T.N.; Lee, J.S. Carbon-Based Materials and Their Applications in Sensing by Electrochemical Voltammetry. Inorganics 2023, 11(2): 81-81; https://doi.org/10.3390/INORGANICS11020081.
- [9] Yuan, S.; Lai, Q.; Duan, X.; Wang, Q. Carbon-based Materials as Anode Materials for Lithium-Ion Batteries and Lithium-Ion Capacitors: A Review. J. Energy Storage 2023, 61: paper 106716; https://doi.org/10.1016/J.EST.2023.106716.
- [10] Ren, X.; Zhao, S.; Han, Z.; Xing, X. Research Progress on Preparation Methods, Composite Systems, and Properties of Nanocomposite Energetic Materials. (in Chinese) Materials Introduction 2019, 33(23): 3939-3948.
- [11] Wen, X.; Wang, J.; Zhang, N.; Huang, D.; Yu, H. Research Progress in the Application of Functionalized Carbon Nanomaterials in the Field of Energetic Materials. (in Chinese) New Chem. Mater. 2023, 51(02): 10-13; https://doi.org/10.19817/j.cnki.issn1006-3536.2023.02.003.
- [12] Li, Z.M.; Zhou, M.R.; Zhang, T.L.; Zhang, J.G.; Yang, L.; Zhou, Z.N. The Facile Synthesis of Graphene Nanoplatelet-Lead Styphnate Composites and Their Depressed Electrostatic Hazards. J. Mater. Chem. A 2013, 1(41): 12710-12714; https://doi.org/10.1039/c3ta13177g.
- [13] Yan, Q.-L.; Gozin, M.; Zhao, F.-Q.; Cohen, A.; Pang, S.-P. Highly Energetic Compositions Based on Functionalized Carbon Nanomaterials. Nanoscale 2016, 8(9): 4799-4851; https://doi.org/10.1039/C5NR07855E.
- [14] Yu, J.; Wang, J.; Liu, Y.; Yu, Y.; Yuan, J.; Jin, S. Preparation and Properties of CL-20/Open Multi Walled Carbon Nanotube Composite Energetic Material. (in Chinese) J. Explos. Mater. 2017, 40(3): 72-76.
- [15] Kent, R.V.; Vaid, T.P.; Boissonnault, J.A.; Matzger, A.J. Adsorption of Tetranitromethane in Zeolitic Imidazolate Frameworks Yields Energetic Materials. Dalton Trans. 2019, 48(22): 7509-7513; https://doi.org/10.1039/c9dt01254k.
- [16] Pichot, V.; Comet, M.; Miesch, J.; Spitzer, D. Nanodiamond for Tuning the Properties of Energetic Composites. J. Hazard. Mater. 2015, 300: 194-201; https://doi.org/10.1016/j.jhazmat.2015.06.039.
- [17] Guillevic, M.; Pichot, V.; Fioux, P.; Schnell, F.; Spitzer, D. Nanodiamond-based Energetic Core-Shell Composites: The Route Towards Safer Materials. Diamond Relat. Mater. 2019, 93: 150-158; https://doi.org/10.1016/j.diamond.2019.02.006.
- [18] Li, H.; Ren, H.; Jiao, Q.; Du, S.; Yu, L. Fabrication and Properties of Insensitive CNT/HMX Energetic Nanocomposites as Ignition Ingredients. Propellants Explos. Pyrotech. 2016, 41(1): 126-135; https://doi.org/10.1002/prep.201500029.
- [19] Zhang, X.; Hao, L. Preparation and Catalytic Activity of M₂O₃/CNTs (M = Y, Nd, Sm) Nanocomposites by Solvothermal Process. J. Nanomater. 2018, 2018: 1-8; https://doi.org/10.1155/2018/3635164.
- [20] Wei, H.; Liu, X.-w.; Hu, Y.; Tang, H.-l.; Ye, Y.-h.; Shen, R.-q. Preparation and Characterization of Silicon-based Cu(N₃)₂@CNTs Composite Energetic Film. (inChinese) Chin. J. Energ. Mater. 2020, 28(06): 557-563; https://doi.org/10.11943/CJEM2019166.
- [21] Zhang, C.; Cao, X.; Xiang, B. Sandwich Complex of TATB/Graphene: An Approach to Molecular Monolayers of Explosives. J. Phys. Chem. C 2010, 114(51): 22684-22687.
- [22] McCrary, P.D.; Beasley, P.A.; Alaniz, S.A.; Griggs, C.S.; Frazier, R.M.; Rogers, R.D. Graphene and Graphene Oxide Can “Lubricate” Ionic Liquids Based on Specific Surface Interactions Leading to Improved Low-Temperature Hypergolic Performance. Angew. Chem., Int. Ed. 2012, 51(39): 9784-9787; https://doi.org/10.1002/anie.201205126.
- [23] Wang, H.; Cao, X.; Wu, J.; Xu, Y.; Shang, Y. Preparation and Thermal Decomposition Characteristics of TKX-50/GO Composite Energetic Materials. (in Chinese) J. Explos. 2020, 43(6): 631-635; https://doi.org/10.14077/j.issn.1007-7812.201908021.
- [24] Song, Y.; Huang, Q.; Zhang, J.; Zhang, Y.; Jin, B.; Peng, R. Interaction‐Enhanced Coating of Energetic Material: A Generally Applicable Method for the Desensitization. Propellants Explos. Pyrotech. 2022, 47(9): 202100256; https://doi.org/https://doi.org/10.1002/prep.202100256.
- [25] Liu, R.; Zhao, W.; Zhang, T.; Yang, L.; Zhou, Z.; Zhang, J. Particle Refinement and Graphene Doping Effects on Thermal Properties of Potassium Picrate. J. Therm. Anal. Calorim. 2014, 118(1): 561-569; https://doi.org/10.1007/s10973-014-3980-3.
- [26] Li, Z.; Wang, Y.; Zhang, Y.; Liu, L.; Zhang, S. CL-20 Hosted in Graphene Foam as a High Energy Material with Low Sensitivity. RSC Adv. 2015, 5(120): 98925-98928.
- [27] Liu, T.; Geng, C.; Zheng, B.; Li, S.; Luo, G. Encapsulation of Cyclotetramethylenetetranitramine (HMX) by Electrostatically Self‐assembled Graphene Oxide for Desensitization. Propellants Explos. Pyrotech. 2017, 42(9): 1057-1065; https://doi.org/10.1002/prep.201700053.
- [28] Su, Y.; Sun, Y.; Zhao, J. Interaction Mechanisms of Insensitive Explosive FOX-7 and Graphene Oxides from Ab Initio Calculations. Nanomater. 2019, 9(9): 1290; https://doi.org/10.3390/nano9091290.
- [29] Zhang, T.; Guo, Y.; Li, J.; Guan, Y.; Guo, Z.; Ma, H. High Catalytic Activity of Nitrogen‐Doped Graphene on the Thermal Decomposition of CL‐20. Propellants Explos. Pyrotech. 2018, 43(12): 1263-1269; https://doi.org/10.1002/prep.201800014.
- [30] Yu, J.; Wang, J.; Liu, Y.; Yu, Y.; Yuan, J. Preparation and Properties of CL-20/GO Nanocomposite Energetic Materials. (in Chinese) Sci. Technol. Eng. 2017, 17(12): 93-96.
- [31] Van Riet, R.; Amayuelas, E.; Lodewyckx, P.; Lefebvre, M.H.; Ania, C.O. Novel Opportunities for Nanoporous Carbons as Energetic Materials. Carbon 2020, 164(C): 129-132; https://doi.org/10.1016/j.carbon.2020.03.061.
- [32] Shin, M.K.; Kim, M.H.; Kim, G.Y.; Kang, B.; Chae. J.S.; Haam, S. Highly Energetic Materials-Hosted 3D Inverse Opal-like Porous Carbon: Stabilization/Desensitization of Explosives. ACS Appl. Mater. Interfaces 2018, 10(50): 43857-43864; https://doi.org/10.1021/acsami.8b11591.
- [33] Qi, W.; Wang, M. Size and Shape Dependent Melting Temperature of Metallic Nanoparticles. Mater. Chem. Phys. 2004, 88(2): 280-284; https://doi.org/10.1016/j.matchemphys.2004.04.026.
- [34] Huang, H.; Shi, Y.; Yang, J. Thermal Characterization of the Promising Energetic Material TKX-50. J. Therm. Anal. Calorim. 2015, 121(2): 705-709; https://doi.org/10.1007/s10973-015-4472-9.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-93332184-4de6-4119-bd4d-5e220bc3e01f