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1. INTRODUCTION

The order of growth of an entire function f(z) is defined by

σ (f) = lim sup
r→+∞

log+ m (r, f)
log r

,

where

m (r, f) = 1
2π

2π∫

0

ln+ ∣∣f
(
reiφ

)∣∣ dφ,

and we have
σ (f) = lim sup

r→+∞

log+ log+ M (r, f)
log r

,

where M (r, f) = max {|f(z)| : |z| = r} (for more details see [5, 8, 14]). Also, the order
of an entire function given by f (z) =

∑+∞
n=0 anzn is equal to

σ (f) = lim sup
n→+∞

n log n

− log |an|

(see [2]).
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Consider the linear differential equation

f (n) + Pn−1(z)f (n−1) + . . . + P1(z)f ′ + P0(z)f = 0, (1.1)

where P0(z) ̸≡ 0, P1(z), . . . , Pn−1(z) are polynomials. It is well known that every
solution f of equation (1.1) is an entire function of finite rational order σ (f) satisfying

σ (f) ≤ 1 + max
0≤k≤n−1

deg Pk

n − k
(1.2)

(see [6, 8, 12, 13]). In [4], Gundersen et al. gave the possible orders of solutions of (1.1).
As particular cases, Belaidi and Hamani proved the following result.

Theorem 1.1 ([1]). Let P0(z), P1(z), . . . , Pn−1 (z) be nonconstant polynomials with
degrees dk = deg Pk(z) (k = 0, 1, . . . , n − 1) .

(i) If d0
n ≥ dk

n−k holds for all k = 1, . . . , n − 1, then any solution f ̸≡ 0 of (1.1)
satisfies σ (f) = 1 + d0

n .
(ii) If dk < dn−1 − (n − k − 1) holds for all k = 0, . . . , n − 2, then any solution f ̸≡ 0

of (1.1) satisfies σ (f) = 1 + dn−1.

Fractional order differential equations have become a very important tool for
modeling phenomena in many diverse fields of science and engineering which tradi-
tional differential modeling cannot accomplish (see, for example, Kilbas et al. [7]). In
present, three kinds of fractional derivatives are often used, the Grünwald–Letnikov
derivative, the Riemann–Liouville derivative and the Caputo derivative. There are
many discussions for properties of these derivatives, see [9, 10]. All these studies
are limited in real line. In this paper, we will use the Caputo derivative which is
defined as follows.

Definition 1.2 ([7, 10,11]). Suppose that α > 0 and r > 0. The fractional operator

Dαf (r) =
{

1
Γ(n−α)

∫ r

0
f(n)(t)

(r−t)α+1−n dt, n − 1 < α < n,
dn

drn f (r) , α = n ∈ N \ {0}

is called the Caputo derivative. It is understood that f should be n time continuously
differentiable.

Consider the function f(z) =
∑+∞

j=0 ajzj , where z = reiθ. By using the properties
of the Caputo operator derivative, for n − 1 < α < n, we have

Dαf(z) =
+∞∑

j=n

Γ (j + 1)
Γ (j − α + 1)ajrj−αejiθ, (1.3)

rαDαf(z) =
+∞∑

j=n

Γ (j + 1)
Γ (j − α + 1)ajzj .
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For α = n ∈ N \ {0} ,

Dαf(z) = dn

drn
f

(
reiθ

)
̸= dn

dzn
f (z) ,

while
rα

z[α] D
αf(z) = dn

dzn
f(z).

Proposition 1.3. The two functions f(z) =
∑+∞

j=0 ajzj and rαDαf(z) have the same
radius of convergence. Consequently, if f(z) is an entire function, then rαDαf(z) is
equally an entire function.

Proof. To prove that the two power series

f(z) =
+∞∑

j=0
ajzj , rαDαf(z) =

+∞∑

j=n

Γ (j + 1)
Γ (j − α + 1)ajzj ,

have the same radius of convergence, we have just to show that

lim
j→+∞

Γ (j + 1)
Γ (j − α + 1)

Γ (j − α + 2)
Γ (j + 2) = 1.

By the property asymptotic of Gamma function near the infinity, we have

lim
j→+∞

Γ (j + 1)
Γ (j − α + 1)

Γ (j − α + 2)
Γ (j + 2) = lim

j→+∞
jα.j−α (1 + o (1)) = 1.

Recently, Chyzhykov and Semochko generalized the Wiman–Valiron method for
fractional derivatives and as an application to fractional differential equations, they
proved the following result.

Theorem 1.4 ([3]). Let a(z) be a polynomial of degree m ≥ 0. Then all nontrivial
solutions f of the equation

D̃q (rqf(z)) + za(z)f(z) = 0 (1.4)

have the order of growth ρ = m+1
q , where D̃qf(z) = Dq

RLf(z) − Γ (q + 1) f (0) and
Dq

RLf(z) is the Riemann–Liouville fractional derivative operator.

Remark 1.5. By using the power series method, we can confirm that (1.4) does not
admit any entire solutions f ̸≡ 0. Corollary 1.9 below might be the alternative result
of Theorem 1.4.

In this paper, we will investigate the growth of solutions of certain class of linear
fractional differential equations by using the Caputo fractional derivative operator as
the following.
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Theorem 1.6. Let P0(z) ̸≡ 0, P1(z), . . . , Pn−1(z) be polynomials such that P0 (0) = 0.
Let 0 = q0 < q1 < q2 < . . . < qn. Then all solutions of the linear fractional differential
equation

rqn

z[qn] D
qnf (z) + Pn−1(z) rqn−1

z[qn−1] D
qn−1f(z) + . . . + P1 (z) rq1

z[q1] D
q1f (z)

+ P0(z)f(z) = 0.
(1.5)

are entire functions of order of growth σ (f) satisfying

σ (f) ≤ max
0≤k≤n−1

{
dk + [qn] − [qk]

qn − qk

}
,

where dk = deg Pk(z) and [x] is the greatest integer less than or equal to the real
number x.

Corollary 1.7. Let P0(z) ̸≡ 0, P1 (z) , . . . , Pn(z) be polynomials such that P0 (0) = 0
and 0 < α < 1. Then, every solution of the linear fractional differential equation

rn+α

zn
Dn+αf(z) + Pn(z)rn−1+α

zn−1 Dn−1+αf(z) + . . . + P2(z)r1+α

z
D1+αf(z)

+ P1(z)rαDαf (z) + P0(z)f(z) = 0.

(1.6)

is an entire function of order of growth σ (f) satisfying

σ (f) ≤ 1
α

+ max
0≤k≤n−1

{
dk

α (n − k)

}
.

In the following theorem, we give the precise value of the order of growth of
solutions of (1.5).
Theorem 1.8. Suppose that we have the same assumptions of Theorem 1.6.

(i) If
d0 + [qn]

qn
≥ dk + [qn] − [qk]

qn − qk
, (1.7)

holds for all k = 1, . . . , n − 1, then every solution f ̸≡ 0 of (1.5) is an entire
function of order of growth

σ (f) = d0 + [qn]
qn

.

(ii) If
dk − [qk] < dn−1 − [qn−1] (1.8)

holds for all k = 0, 1, . . . , n − 2, then every solution f ̸≡ 0 of (1.5) is an entire
function of order of growth

σ (f) = dn−1 + [qn] − [qn−1]
qn − qn−1

.
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Corollary 1.9. Let P0(z) ̸≡ 0 be polynomial of degree d0 such that P0 (0) = 0 and
α > 0. Then every solution f ̸≡ 0 of the linear fractional differential equation

rα

z[α] D
αf (z) + P0(z)f(z) = 0

is an entire function of order of growth

σ (f) = d0 + [α]
α

.

Corollary 1.10. Let 0 < α < β. Let P0(z) ̸≡ 0 and P1(z) ̸≡ 0 be polynomials of
degrees d0 and d1, respectively, such that P0 (0) = 0 and d0 < d1 − [α]. Then, every
solution f ̸≡ 0 of the linear fractional differential equation

rβ

z[β] D
βf (z) + P1(z) rα

z[α] D
αf(z) + P0(z)f (z) = 0

is an entire function of order of growth

σ (f) = d1 + [β] − [α]
β − α

.

Example 1.11. Consider the fractional differential equation

rαDαf(z) + zf(z) = 0, (1.9)

where 0 < α < 1. By Corollary 1.9, every solution f ̸≡ 0 of (1.9) is an entire function
of order of growth σ (f) = d0+[α]

α = 1
α . We confirm this by using the power series

method. Set f(z) =
∑+∞

j=0 ajzj . By (1.9), we find that

aj = (−1)j
a0

j∏

k=1

Γ (k − α + 1)
Γ (k + 1) .

By the property asymptotic of Gamma function near the infinity, we have

Γ (j − α + 1)
Γ (j + 1) = j−α (1 + o (1)) , j → +∞,

so there exist c > 0, j0 > 0 such that

|aj | = cj−(j−j0)α (1 + o (1)) , j → +∞

and then σ (f) = 1
α .
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Example 1.12. Consider the fractional differential equation

rα

z
Dαf(z) + zf (z) = 0, (1.10)

where 1 < α < 2. By Corollary 1.9, every solution f ̸≡ 0 of (1.10) is an entire function
of order of growth σ (f) = d0+[α]

α = 2
α . In fact, the solutions of (1.10) are in the form

f(z) =
∑+∞

j=0 ajzj such that

a2j = (−1)j
a0

j∏

k=1

Γ (2k − α + 1)
Γ (2k + 2) , j ≥ 1,

a2j+1 = (−1)j
a1

j∏

k=1

Γ (2k − α + 3)
Γ (2k + 3) , j ≥ 0.

Set

f1(z) =
+∞∑

j=0
b2jz2j , f2(z) =

+∞∑

j=0
b2j+1z2j+1,

where b2j = a2j

a0
and b2j+1 = a2j+1

a1
. Hence {f1, f2} forms the fundamental set of

solutions of (1.10). By the same method of Example 1.11, we find that σ (f1) =
σ (f2) = 2

α . Since f1(z) and f2(z) are linearly independents, we conclude that every
solution f ̸≡ 0 of (1.10) is an entire function of order of growth σ (f) = 2

α .

2. PRELIMINARY LEMMAS

For the proof of our results we need the following lemmas.
Lemma 2.1 ([3]). Let f(z) be an entire function, α > 0, 0 < δ < 1

4 and z be such
that |z| = r and that

|f(z)| > M (r, f) ν (r)− 1
4 +δ

holds; where ν (r) is the central index of f. Then there exists a set E ⊂ (0, +∞) of
finite logarithmic measure, that is

∫
E

dt
t < +∞, such that

rαDαf(z)
f (z) = (ν (r))α (1 + o (1)) (2.1)

holds for r → +∞ and r /∈ E.

Remark 2.2. We signal here that the fractional derivative used in the proof
of Lemma 2.1 is the Riemann–Liouville operator and for an entire function
f(z) =

∑+∞
j=0 ajzj we have

Dα
RLf(z) =

+∞∑

j=0

Γ (j + 1)
Γ (j − α + 1)ajrj−αejiθ. (2.2)
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By (1.3) and (2.2), we conclude that the proof of Lemma 2.1 is valid also for the
Caputo fractional derivative operator.

Lemma 2.3 ([8]). Let f(z) be an entire function of finite order σ (f) < +∞. Then

lim sup
r→+∞

log+ ν (r)
log r

= σ (f) ,

where ν (r) is the central index of f.

Lemma 2.4 ([8]). Let P (z) = anzn + . . . + a0 be a polynomial of degree n. Then, for
any given ε > 0 there exists r0 > 0 such that for all r = |z| > r0 the inequalities

(1 − ε) |an| rn ≤ |P (z)| ≤ (1 + ε) |an| rn

hold.

Lemma 2.5. Let P0(z) ̸≡ 0, P1 (z) , . . . , Pn−1(z) be polynomials such that P0 (0) = 0
and let 0 < q1 < q2 < . . . < qn be real constants. Then, all solutions of (1.5) are entire
functions.

Proof. We will use the power series method. Set f(z) =
∑+∞

j=0 ajzj . Without lost of
generality, we can suppose that k − 1 < qk < k (k = 1, 2, . . . , n). Then we have

Pk(z) rqk

z[qk] D
qk f(z) = Pk(z) rqk

zk−1

+∞∑

j=k

Γ (j + 1)
Γ (j − qk + 1)ajrj−qk ejiθ

= Pk(z)
+∞∑

j=k

Γ (j + 1)
Γ (j − qk + 1)ajzj−k+1

= Pk(z)
+∞∑

j=k

bk,jajzj−k+1,

where bk,j = Γ(j+1)
Γ(j−qk+1) . Since P0 (0) = 0, we can write P0(z) = zP̃0(z) and by dividing

the equation (1.5) by z we get

+∞∑

j=n

bn,jajzj−n + Pn−1(z)
+∞∑

j=n−1
bn−1,jajzj−n+1 + . . .

+ P1(z)
+∞∑

j=1
b1,jajzj−1 + P̃0(z)

+∞∑

j=0
ajzj = 0.

What remains in this method is well known: as in the classical case of linear differential
equations, by identification, we can determine aj (j = n, n + 1, . . . .) by the first n
terms aj (j = 0, 1, . . . , n − 1) and then we conclude that the global solutions of (1.5)
are entire functions that contains n parameters.
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3. PROOF OF THEOREMS

Proof of Theorem 1.6. We suppose to the contrary that there exists a solution f of
(1.5) of order

σ (f) > max
0≤k≤n−1

{
dk + [qn] − [qk]

qn − qk

}
, (3.1)

and we prove that this leads to a contradiction. From (1.5) we can write
∣∣∣∣
rqnDqnf(z)

z[qn]f(z)

∣∣∣∣ ≤ |Pn−1 (z)|
∣∣∣∣
rqn−1Dqn−1f(z)

z[qn−1]f (z)

∣∣∣∣ + . . .

+ |P1(z)|
∣∣∣∣
rq1Dq1f(z)
z[q1]f (z)

∣∣∣∣ + |P0(z)| .

(3.2)

By Lemma 2.4, there exists cj > 0 and ra ≥ 0 such that for all r ≥ ra we have

|Pj(z)| ≤ cjrdj . (3.3)

By Lemma 2.1, there exists a set E ⊂ (0, +∞) of finite logarithmic measure, such that
for r → +∞ and r /∈ E, we have

∣∣∣∣
rqk Dqk f(z)

f (z)

∣∣∣∣ = (ν (r))qk (1 + o (1)) , j = 1, . . . , n. (3.4)

Using (3.3)–(3.4) in (3.2), we obtain

1
r[qn] (ν (r))qn (1 + o (1)) ≤

n−1∑

k=0
ckrdk

1
r[qk] (ν (r))qk (1 + o (1)) . (3.5)

By Lemma 2.3, for every ε > 0 there exist rb ≥ 0 such that for all r ≥ rb we have

ν (r) ≤ rσ+ε, (3.6)

where σ (f) = σ. On the other hand for ε > 0, there exists a sequence rm → +∞ when
m → +∞ such that

ν (rm) ≥ rσ−ε
m , (3.7)

Combining (3.6)–(3.7) with (3.5), we get

1
2rqn(σ−ε)

m ≤ 2
n−1∑

k=0
ckr[qn]−[qk]

m rdk
m rqk(σ+ε)

m ,

which implies

1 ≤ 4
n−1∑

k=0
ckr[qn]−[qk]−qn(σ−ε)+dk+qk(σ+ε)

m . (3.8)
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Now we prove that all the powers of rm in (3.8) are negative as m → +∞. From (3.1)
there exists ε > 0 small enough such that

σ − max
0≤k≤n−1

{
dk + [qn] − [qk]

qn − qk

}
> βε (3.9)

where β is any constant such that β > max
0≤k≤n−1

{
qn+qk

qn−qk

}
. We have

[qn] − [qk] − qn (σ − ε) + dk + qk (σ + ε)

= (qn − qk)
(

dk + [qn] − [qk]
qn − qk

− σ

)
+ (qn + qk) ε

(3.10)

From (3.9) we get

(qn − qk)
(

dk + [qn] − [qk]
qn − qk

− σ

)
+ (qn + qk) ε < 0,

and then a contradiction follows in (3.8) as m → +∞.

Proof of Theorem 1.8. (i) From Theorem 1.6 and the assumption (1.7), we have
σ (f) ≤ d0+[qn]

qn
. It remains to prove the inverse inequality σ (f) ≥ d0+[qn]

qn
. We suppose

to the contrary that σ (f) < d0+[qn]
qn

and we prove that this leads to a contradiction.
Set σ = σ (f) = d0+[qn]

qn
− 2ε for ε > 0 From (1.5) we can write

|P0(z)| ≤
∣∣∣∣
rqnDqnf(z)
z[qn]f (z)

∣∣∣∣ + |Pn−1(z)|
∣∣∣∣
rqn−1Dqn−1f(z)

z[qn−1]f(z)

∣∣∣∣ + . . .

+ |P1(z)|
∣∣∣∣
rq1Dq1f(z)

z[q1]f(z)

∣∣∣∣ .

(3.11)

By Lemma 2.4, there exists c > 0 and ra > 0 such that for all r ≥ ra we have

|P0(z)| ≥ crd0 . (3.12)

Using (3.3), (3.4), (3.6) and (3.12) in (3.11), for r large enough, we obtain

crd0 ≤ rqn(σ+ε)−[qn] +
n−1∑

k=1
ckrdk+qk(σ+ε)−[qk],

which implies

c ≤ rqn(σ+ε)−[qn]−d0 +
n−1∑

k=1
ckrdk+qk(σ+ε)−[qk]−d0 . (3.13)

Now, we will prove that all the powers of r in (3.13) are negative. Since
σ = d0+[qn]

qn
− 2ε, first we have

qn (σ + ε) − [qn] − d0 = qn

(
d0 + [qn]

qn
− ε

)
− [qn] − d0 = −qnε. (3.14)
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Secondly, by taking account the assumption (1.7), we get

dk + qk (σ + ε) − [qk] − d0

= dk + qk

(
d0 + [qn]

qn
− ε

)
− [qk] − d0

= dk + [qn] − [qk]
qn − qk

(qn − qk) + qk

(
d0 + [qn]

qn
− ε

)
− [qn] − d0

≤ d0 + [qn]
qn

(qn − qk) + qk

(
d0 + [qn]

qn
− ε

)
− [qn] − d0 ≤ −qkε.

(3.15)

So, a contradiction follows when r → +∞ in (3.13), and then the proof of (i) is
completed.

(ii) From the assumption (1.8) we have

dk + [qn] − [qk]
qn − qk

<
dn−1 + [qn] − [qn−1]

qn − qn−1
(3.16)

for all k = 0, 1, . . . , n − 2, and by Theorem 1.6, we obtain

σ (f) ≤ dn−1 + [qn] − [qn−1]
qn − qn−1

.

For the inverse inequality we suppose to the contrary that

σ (f) <
dn−1 + [qn] − [qn−1]

qn − qn−1

and we prove that this leads to a contradiction. Set

σ = σ (f) = dn−1 + [qn] − [qn−1]
qn − qn−1

− λε, (3.17)

where λ is any constant such that λ > qn+qn−1
qn−qn−1

and ε > 0 small enough. From (1.5)
we can write

|Pn−1(z)|
∣∣∣∣
rqn−1Dqn−1f(z)

z[qn−1]f (z)

∣∣∣∣ ≤
∣∣∣∣
rqnDqnf(z)

z[qn]f(z)

∣∣∣∣

+ |Pn−2(z)|
∣∣∣∣
rqn−2Dqn−2f(z)

z[qn−2]f(z)

∣∣∣∣ + . . .

+ |P1(z)|
∣∣∣∣
rq1Dq1f(z)
z[q1]f (z)

∣∣∣∣ + |P0(z)| .

(3.18)

By using (3.4), Lemma 2.3, Lemma 2.4, (3.6) and (3.7) in (3.18), we obtain

cn−1rdn−1+qn−1(σ−ε)−[qn−1]
m ≤ rqn(σ+ε)−[qn]

m +
n−2∑

k=0
ckrdk+qk(σ+ε)−[qk]

m ,
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which implies

1 ≤ 1
cn−1

rqn(σ+ε)−[qn]−dn−1−qn−1(σ−ε)+[qn−1]
m (3.19)

+
n−2∑

k=0

ck

cn−1
rdk+qk(σ+ε)−[qk]−dn−1−qn−1(σ−ε)+[qn−1]

m .

As above we prove that all the powers of rm of (3.19) are negative. By (3.17), we get

qn (σ + ε) − [qn] − dn−1 − qn−1 (σ − ε) + [qn−1]

= (qn + qn−1) ε + (qn − qn−1)
(

σ − dn−1 + [qn] − [qn−1]
qn − qn−1

)

= −λε (qn − qn−1) + (qn + qn−1) ε

= [(qn + qn−1) − λ (qn − qn−1)] ε < 0.

Also, from the assumption (1.8), we have

dk + qk (σ + ε) − [qk] − dn−1 − qn−1 (σ − ε) + [qn−1]
< qk (σ + ε) − qn−1 (σ − ε)
< (qk − qn−1) σ + (qn + qn−1) ε < 0,

for 0 < ε < (qn−1−qk)σ
qn+qn−1

. So, (3.19) leads to a contradiction when rm → +∞, which
completes the proof of (ii).
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