PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A Diffusion Model of Binary Systems Controlled by Chemical Potential Gradient

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents a model of diffusion in a single phase with chemical potential gradient as the driving force of the process. Fick’s laws are strictly empirical and the assumption that the concentration gradients are the driving forces of diffusion is far from precise. Instead, the gradient of chemical potential μi of component i is the real driving force. The matter of governing equations of models that incorporate this approach will be raised and discussed in this article. One of more important features is the ability to acquire results where diffusion against the concentration gradient may occur. The presented model uses the Finite Difference Method (FDM) and employs the CALPHAD method to obtain chemical potentials. The calculations of chemical potential are carried out for instant conditions – temperature and composition – in the entire task domain by Thermo-Calc via a TQ-Interface. Then the heterogeneity of chemical potentials is translated into mass transfer for each individual element. Calculations of two modelling tasks for one-dimension diffusion field were carried out. First: isothermal conditions with linear initial composition distribution and second: constant temperature gradient with uniform chemical composition in the specimen. Results for two binary solid solutions: Fe-C and Fe-Si, in the FCC phase for the given tasks will be presented. Modelling allows us to estimate the time needed to reach a desired state in a particular equilibrium or quasi-equilibrium state. It also shows the path of the composition change during the process. This can be used to determine whether the system at some point is getting close to the formation of another phase due to significant deviation from its initial conditions.
Słowa kluczowe
Rocznik
Strony
39--44
Opis fizyczny
Bibliogr. 17 poz., wykr.
Twórcy
  • AGH University of Science and Technology, Faculty of Foundry Engineering, al. A. Mickiewicza 30, 30-059 Krakow
  • AGH University of Science and Technology, Faculty of Foundry Engineering, al. A. Mickiewicza 30, 30-059 Krakow
Bibliografia
  • 1. Bergethon P.R. & Simons E.R. (1990). Biophysical Chemistry: Molecules to Membranes. New York: Springer-Verlag.
  • 2. Shewmon P. (2016). Diffusion in Solids. Cham: Springer International Publishers.
  • 3. Bhadeshia H.K.D.H. (2021). Course MP6: Kinetics & Microstructure Modelling. University of Cambridge. Retrieved from: https://www.phase-trans.msm.cam.ac.uk/teaching.html [23.08.2021].
  • 4. Mehrer H. (2007). Diffusion in Solids: Fundamentals, Methods, Materials, Diffusion-Controled Processes. Berlin – Heidelberg: Springer-Verlag.
  • 5. Porter D.A., Easterling K.E. & Sherif M.Y. (2009). Phase Transformations in Metals and Alloys. Boca Raton: CRC Press.
  • 6. Tilley R.J.D. (2004). Understanding Solids: The Science of Materials. Chichester: John Wiley & Sons.
  • 7. Ernst D. & Kohler J. (2013). Measuring a diffusion coefficient by single-particle tracking: statistical analysis of experimental mean squared displacement curves. Physical Chemistry Chemical Physics, 15(3), 845–849. Doi: https://doi.org/10.1039/c2cp43433d.
  • 8. Bergethon P.R. (2000). The Physical Basis of Biochemistry. New York: Springer Science + Business Media.
  • 9. Spiegel M.R. (1959). Vector Analysis. New York: McGraw-Hill.
  • 10. Lukas H.L., Fries S.G. & Sundman B. (2007). Computational Thermodynamics. Cambridge: Cambridge University Press.
  • 11. Zabdyr L. A. (2005). Strategia CALPHAD. Kraków: Instytut Metalurgii i Inżynierii Materiałowej PAN.
  • 12. Spencer P.J. (2008) A brief history of CALPHAD. Calphad, 32(1), 1–8. Doi: https://doi.org/10.1016/j.calphad.2007.10.001.
  • 13. Wróbel M. & Burbelko A. (2013). Wykorzystanie programów komputerowych do obliczeń termodynamicznych w procesach metalurgicznych: metoda CALPHAD. In: Holtzer M., Procesy metalurgiczne i odlewnicze stopów żelaza: podstawy fizykochemiczne. Warszawa: Wydawnictwo Naukowe PWN, 512–534.
  • 14. Wróbel M. & Burbelko A. (2014). Retrieval of Thermodynamic Data for Modelling of Solidification Using TQ Interface. METAL 2014: 23rd International Conference on Metallurgy and Materials, May 21–23 Brno. (pp. 99-104). Ostrava: Tanger.
  • 15. Brandes E.A. & Brook G.B. (Eds.) (1998). Smithells Metals Reference Book. 7th Edition. Oxford: Elsevier.
  • 16. Bergner D., Khaddour Y. & Lorx S. (1989). Diffusion of Si in bcc- and fcc-Fe. Defect and Diffusion Forum, 66–69, 1407–1412. Doi: https://doi.org/10.4028/www.scientific.net/DDF.66-69.1407.
  • 17. Darken L.S. (1949). Diffusion of Carbon in Austenite with a Discontinuity in Composition. Transactions of the AIME, 180, 430–438.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu „Społeczna odpowiedzialność nauki” - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-932b4a9e-3bb4-42c3-8218-588b8a99befc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.