PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Applying a Quantum Annealing Based Restricted Boltzmann Machine for MNIST Handwritten Digit Classification

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
in various recent research, there may still be challenges in achieving acceptable performance using quantum computers for solving practical problems. Nevertheless, we demonstrate promising results by using the recent advent of the D-Wave Advantage quantum annealer to train and test a Restricted Boltzmann Machine for the well studied MNIST dataset. We compare our new model with some tests executed on the previous D-Wave 2000Q system and show an improved image classification process with a better overall quality. In this paper we discuss how to enhance often timeconsuming RBM training processes based on the commonly used Gibbs sampling using an improved version of quantum sampling. In order to prevent overfitting we propose some solutions which help to acquire less probable samples from the distribution by adjusting D-wave control and embedding parameters. Finally, we present various limitations of the existing quantum computing hardware and expected changes on the quantum hardware and software sides which can be adopted for further improvements in the field of machine learning.
Twórcy
autor
  • Poznan Supercomputing and Networking Center ul. Jana Pawła II 10 61-139 Poznan, Poland
autor
  • Poznan Supercomputing and Networking Center ul. Jana Pawła II 10 61-139 Poznan, Poland
autor
  • Poznan Supercomputing and Networking Center ul. Jana Pawła II 10 61-139 Poznan, Poland
autor
  • Poznan University of Technology Institute of Computing Science ul. Piotrowo 2, 60-965 Poznan, Poland
Bibliografia
  • [1] K. Kurowski, J. Weglarz, M. Subocz, R. Rozycki, G. Waligóra, Hybrid Quantum Annealing Heuristic Method for Solving Job Shop Scheduling Problem, [In:] Computational Science – ICCS 2020. Lecture Notes in Computer Science 12142, Eds. V.V. Krzhizhanovskaya, G. Závodszky, M.H. Lees, J.J. Dongarra, P.M.A. Sloot, S. Brissos, J. Teixeira, Springer, Cham (2020).
  • [2] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, S. Lloyd, Quantum machine learning, Nature 549, 195–202 (2017).
  • [3] S.H. Adachi, P. Maxwell, Henderson Application of quantum annealing to training of deep neural networks, arXiv: 1510.06356 (2015).
  • [4] S. Lloyd, M. Mohseni, P. Rebentrost, Quantum algorithms for supervised and unsupervised machine learning, arXiv: 1307.0411 (2013).
  • [5] N. Wiebe, A. Kapoor, K.M. Svore, Quantum Deep Learning, arXiv: 1412.3489 (2015).
  • [6] D. Crawford, A. Levit, N. Ghadermarzy, J.S. Oberoi, P. Ronagh, Reinforcement Learning Using Quantum Boltzmann Machines, arXiv: 1612.05695 (2016).
  • [7] P. Smolensky, Chapter 6: Information Processing in Dynamical Systems: Foundations of Harmony Theory, [In:] Parallel Distributed Processing: Explorations in the Microstructure of Cognition 1: Foundations, Eds. D.E. Rumelhart, J.L. McLelland, MIT Press, 194–281 (1986).
  • [8] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-Based Learning Applied to Document Recognition, Proceedings of the IEEE 86(11), 2278–2324 (1998).
  • [9] M. Benedetti, J. Realpe-Gomez, A. Perdomo-Ortiz, Quantum-assisted helmholtz machines: a quantum-classical deep learning framework for industrial datasets in near-term devices, arXiv: 1708.09784 (2017).
  • [10] S. Ni, S. Nagayama, Performance comparison on cfrbm between gpu and quantum annealing, Technical report, Mercari (2018).
  • [11] Quantum annealing based RBM, https://github.com/marek subocz/QRBM.
  • [12] G.E. Hinton, S. Osindero, Y.W. Teh, A fast learning algorithm for deep belief nets, Neural Comput. 18(7), 1527–1554 (2006).
  • [13] T. Tieleman, Training Restricted Boltzmann Machines using Approximations to the Likelihood Gradient, Proceedings of the 25th international conference on Machine learning, 1064–1071 (2008).
  • [14] J. Brugger, Ch. Seidel, M. Streif, F. Wudarski, Ch. Dittel, A. Buchleitner, Output statistics of quantum annealers with disorder, arXiv: 1808.06817 (2021).
  • [15] Scikit-learn documentation, https://scikit-learn.org/stable/modules/generated/sklearn.neuralnetwork.BernoulliRBM.html.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9315a3be-a814-4e43-ae74-434af2b9182d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.