PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Selected aspects of coal gasification for application in low-emission energy technologies

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wybrane aspekty zgazowania węgla do zastosowania w niskoemisyjnych technologiach energetycznych
Języki publikacji
EN
Abstrakty
EN
Solid fuel electricity generation has been known and used for many years. The combustion of solid fuels is a complex process that requires proper preparation of the fuel, carrying out the combustion process, as well as the removal of harmful substances in the form of dust and gaseous pollutants (NOx, SOx, CO) from exhaust gases emitted into the environment. For decades, the gaseous form has been considered the noblest form of fuel. Gaseous fuels can be easily transported over long distances, are immediately ready for combustion and the composition of the fuel mixture can be freely adjusted. The constant pursuit to reduce anthropogenic greenhouse gas emissions require the use of low-emission and zero-emission energy generation technologies. In the case of coal, this will mean a shift from direct combustion to more advanced systems powered by gaseous fuel. The paper presents an overview of the available techniques and technologies of solid fuel gasification aimed at the production of gaseous fuels, which can be used in low-emission energy technologies. The computational methods of the gasification process are also presented, which allow the selection of the best technology and operating parameters of individual reactors.
PL
Wytwarzanie energii elektrycznej z wykorzystaniem paliw stałych jest znane i stosowane od wielu lat. Spalanie paliw stałych jest procesem złożonym, wymagającym odpowiedniego przygotowania paliwa, przeprowadzenia procesu spalania, jak również pozbawienia spalin szkodliwych substancji emitowanych do środowiska w postaci pyłu oraz zanieczyszczeń gazowych (NOx, SOx, CO). Od dekad jako najszlachetniejszą postać paliwa uznaje się postać gazową. Paliwa gazowe mogą być łatwo transportowane na duże odległości, są od razu gotowe do spalania, a skład mieszanki paliwa można dowolnie regulować. Ciągłe dążenie do ograniczenia antropogenicznych emisji gazów cieplarnianych wiąże się z koniecznością stosowania niskoemisyjnych i zeroemisyjnych technologii wytwarzania energii. W przypadku węgla oznaczać to będzie konieczność odchodzenia od technologii bezpośredniego spalania na rzecz bardziej zaawansowanych układów zasilanych paliwem w postaci gazowej. W artykule przedstawiono przegląd dostępnych technik i technologii zgazowania paliw stałych ukierunkowanych na produkcję paliw gazowych, możliwych do zastosowania w niskoemisyjnych technologiach energetycznych. Przedstawione zostały także metody obliczeniowe procesu zgazowania mające umożliwić dobór najlepszej technologii oraz parametrów pracy poszczególnych reaktorów.
Wydawca
Rocznik
Strony
31--39
Opis fizyczny
Bibliogr. 48 poz., rys., tab.
Twórcy
  • AGH University of Science and Technology al. A. Mickiewicza 30, 30-059 Krakow, Poland
  • AGH University of Science and Technology al. A. Mickiewicza 30, 30-059 Krakow, Poland
  • AGH University of Science and Technology al. A. Mickiewicza 30, 30-059 Krakow, Poland
  • AGH University of Science and Technology al. A. Mickiewicza 30, 30-059 Krakow, Poland
Bibliografia
  • [1] Mishra A., Gautam S., Sharma T.: Effect of operating parameters on coal gasification. International Journal of Coal Science & Technology 2018, 5, 2: 113–125.
  • [2] Abdoulmoumine N., Adhikari S., Kulkarni A., Chattanathan S.: A review on biomass gasification syngas cleanup. Applied Energy 2015, 155: 294–307.
  • [3] Tennison I. et al.: Health care’s response to climate change: a carbon footprint assessment of the NHS in England. The Lancet Planetary Health 2021, 5: 84–92.
  • [4] Balmes J.R.: Household air pollution from domestic combustion of solid fuels and health. Journal of Allergy and Clinical Immunology 2019, 143, 6: 1979–1987.
  • [5] Kwaśniewski K., Kopacz M., Grzesiak P., Kapłan R., Sobczyk E.J.: Zgazowanie węgla: uwarunkowania, efektywność i perspektywy rozwoju. Wydawnictwa AGH, Kraków 2015.
  • [6] Klimiuk E., Pawłowska M., Pokój T.: Biopaliwa: Technologie dla zrównoważonego rozwoju. Wydawnictwo Naukowe PWN, Warszawa 2012.
  • [7] You S., Ok Y.S., Tsang D.C. W., Kwon E.E., Wang C.-H.: Towards practical application of gasification: a critical review from syngas and biochar perspectives. Critical Reviews in Environmental Science and Technology 2018, 48, 22–24: 1165–1213.
  • [8] Svoboda K., Pohořelý M., Hartman M., Martinec J.: Pretreatment and feeding of biomass for pressurized entrained flow gasification. Fuel Processing Technology 2009, 90, 5: 629–635.
  • [9] Chmielniak T., Ściążko M.: Development state and analysis of available gasification technologies used for solid fuels and wastes. In: Development of coal, biomass and wastes gasification technologies with particular interest in chemical sequestration of CO2: a monograph, red. A. Strugała, AKNET, Kraków 2012, 200–208.
  • [10] Lurgi FBDBTM – Fixed Bed Dry Bottom Gasification. Air Liquide, https://www.engineering-airliquide.com/lurgi-fbdb-fixedbed-dry-bottom-gasification [15.02.2022].
  • [11] Clean Energy and Clean Air in one word: ENVIROTHERM, 2012. https://enviro.su//assets/uploads/2018/10/Brochure_Envirotherm_Technologies.pdf [15.02.2022].
  • [12] Jafri Y., Waldheim L., Lundgren J.: Emerging Gasification Technologies for Waste & Biomass. IEA Bioenergy, 2020.
  • [13] Swanson M., Henderson A.: Fluid-Bed Testing of Greatpoint Energy’s Direct Oxygen Injection Catalytic Gasification Process for Synthetic Natural Gas and Hydrogen Coproduction. Year 6 – Activity 1.14 – Development of a National Center for Hydrogen Technology. Grand Forks, Energy & Environmental Research Center, University of Dakota, USA 2012.
  • [14] Toporov D., Abraham R.: Gasification of low-rank coal in the High-Temperature Winkler (HTW) process. Journal of the Southern African Institute of Mining and Metallurgy 2015, 115, 7.
  • [15] Guan X.: Particulate control devices in Kemper County IGCC Project. Energy Reports 2019, 5: 969–978.
  • [16] Lihuayi Again Selects GE’s Gasification Technology to Boost Refinery Hydrogen Production. GE News, https://www.ge.com/news/press-releases/lihuayi-again-selects-ges-gasificationtechnology-boost-refinery-hydrogen-production [15.02.2022].
  • [17] Andrews A., Logan J.: Fischer-Tropsch Fuels from Coal, Natural Gas, and Biomass: Background and Policy. CRS Report for Congress 2008, USA.
  • [18] Breault R.W.: Gasification processes old and new: A basic review of the major technologies. Energies 2010, 3, 2: 216–240.
  • [19] Phillips J.N., Booras G.S., Marasigan J.: The history of integrated gasification combined-cycle power plants. Proceedings of the ASME Turbo Expo 2017.
  • [20] Thomson R., Kwong P., Ahmad E., Nigam K.D.P.: Clean syngas from small commercial biomass gasifiers; a review of gasifier development, recent advances and performance evaluation. International Journal of Hydrogen Energy 2020, 45, 41: 21087–21111.
  • [21] Dahou T., Defoort F., Khiari B., Labaki M., Dupont C., Jeguirim M.: Role of inorganics on the biomass char gasification reactivity: A review involving reaction mechanisms and kinetics models. Renewable and Sustainable Energy Reviews 2021, 135.
  • [22] Fluidized Bed Gasifier Plants. Biowaste Gasification. HoSt Bioenergy, https://www.host.nl/en/biomass-gasification [15.02.2022].
  • [23] ANDRITZ Carbona Bubbling Fluidized Bed (BFB) gasifier. https://www.andritz.com/products-en/group/pulp-and-paper/power-generation/gasification/bfb-gasifiers [15.02.2022].
  • [24] Valmet Gasifier for biomass and waste. https://www.valmet.com/energyproduction/gasification/ [15.02.2022].
  • [25] Patented Gasification Technology. EQTEC Technology, https://eqtec.com/patented-gasification-technology/ [31.01.2022].
  • [26] Henan Haiqi Environmental Protection Technology Co., Ltdbiomass burner, pellet burner, sawdust burner, biomass gasifier, waste pyrolysis gasification. http://www.haiqi-machine.com/ [15.02.2022].
  • [27] Downdraft Biomass Gasifiers and Updraft Biomass Gasifiers. https://www.chanderpur.com/biomass-gasifier.php [15.02.2022].
  • [28] Biomass Gasifiers, Gasifiers Pellets Supplier, Biomass Uses, Bio Fuel. http://www.infiniteenergyindia.com/biomass-gasifiers.html [15.02.2022].
  • [29] Gasification Technology Center. TU Bergakademie Freiberg. https://tu-freiberg.de/en/iec/evt/networking/gasification-technologycenter [15.02.2022].
  • [30] Asadullah M.: Barriers of commercial power generation using biomass gasification gas: A review. Renewable and Sustainable Energy Reviews 2014, 29: 201–215.
  • [31] Ptasinski K.J.: Efficiency of Biomass Energy: An Exergy Approach to Biofuels, Power, and Biorefineries. John Wiley & Sons, New Jersey 2016.
  • [32] Howaniec N.: Wybrane aspekty współzgazowania węgla i biomasy parą wodną. Karbo 2015, 4: 139–144.
  • [33] Kozaczka J.: Procesy zgazowania: inżynierskie metody obliczeń. Wydawnictwa AGH, Kraków 1994.
  • [34] An H., Fang X., Liu Z., Li Y.: Research on a soft-measurement model of gasification temperature based on recurrent neural network. Clean Energy 2022, 6, 1: 861–868.
  • [35] Safarian S., Unnţórsson R., Richter C.: A review of biomass gasification modelling. Renewable and Sustainable Energy Reviews 2019, 110: 378–391.
  • [36] Wang Y., Wang J., Luo X., Guo S., Lv J., Gao Q.: Dynamic modelling and simulation of IGCC process with Texaco gasifier using different coal. Systems Science & Control Engineering An Open Access Journal, January 2015, 3, 1: 198–210.
  • [37] Wang M., Liu G., Hui C.W.: Optimization of IGCC gasification unit based on the novel simplified equilibrium model. Clean Technologies and Environmental Policy 2018, 20, 2: 259–269.
  • [38] Ptasinski K.J., Hamelinck C., Kerkhof P.J.A.M.: Exergy analysis of methanol from the sewage sludge process. Energy Conversion and Management 2002, 43, 9–12: 1445–1457.
  • [39] Cruz P.L., Navas-Anguita Z., Iribarren D., Dufour J.: Exergy analysis of hydrogen production via biogas dry reforming. International Journal of Hydrogen Energy 2018, 43, 26: 11688–11695.
  • [40] Migliaccio R.: Sewage Sludge Gasification in a Fluidized Bed: Experimental Investigation and Modeling. Industrial & Engineering Chemistry Research 2021, 60, 13: 5034–5047.
  • [41] Jia J., Zang G., Paul M.C.: Energy, exergy, and economic (3E) evaluation of a CCHP system with biomass gasifier, solid oxide fuel cells, micro-gas turbine, and absorption chiller. International Journal of Energy Research 2021, 45, 10: 15182–15199.
  • [42] Singh R.I., Brink A., Hupa M.: CFD modeling to study fluidized bed combustion and gasification. Applied Thermal Engineering. 2013, 52: 585–614.
  • [43] Mularski J., Pawlak-Kruczek H., Modlinski N.: A review of recent studies of the CFD modelling of coal gasification in entrained flow gasifiers, covering devolatilization, gas-phase reactions, surface reactions, models and kinetics. Fuel 2020, 271.
  • [44] Madejski P.: Numerical study of a large-scale pulverized coalfired boiler operation using CFD modeling based on the probability density function method. Applied Thermal Engineering 2018, 145: 352–363.
  • [45] Hasse C., Debiagi P., Wen X., Hildebrandt K., Vascellari M., Faravelli T.: Advanced modeling approaches for CFD simulations of coal combustion and gasification. Progress in Energy and Combustion Science 2021, 86: 100938.
  • [46] Mularski J., Modliński, N.: Entrained-Flow Coal Gasification Process Simulation with the Emphasis on Empirical Char Conversion Models Optimization Procedure. Energies 2021, 14, 6: 1729.
  • [47] Stabilny rozwój w niełatwym otoczeniu – raport zintegrowany 2019, Grupa Kapitałowa Lubelski Węgiel Bogdanka 2020.
  • [48] Acharya B.: Cleaning of Product Gas of Gasification. Biomass Gasification, Pyrolysis and Torrefaction: Practical Design and Theory 2018: 373–391.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-93106d37-19ad-45ec-9924-fbb7f4529b4e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.