PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dynamic group threshold signature based on derandomized Weil pairing computation

Języki publikacji
EN
Abstrakty
EN
We propose the Weil Pairing based threshold flexible signature scheme for dynamic group. The protocol applies the simple additive secret sharing device. Its security is based on the computational Diffie-Hellman problem in the gap Diffie-Hellman groups. The computation of the Weil pairing is the crucial point of our proposition. We have managed to avoid the random numbers generation in the corresponding Miller’s algorithm without an essential increase in the computational cost. The system is particularly interesting when the threshold size is small in relation to the group cardinality.
Rocznik
Strony
183--193
Opis fizyczny
Bibliogr. 19 poz.
Twórcy
autor
  • Warsaw University, Institute of Mathematics Polish Academy of Sciences , Institute of Mathematics
autor
  • Warsaw University, Institute of Mathematics Polish Academy of Sciences , Institute of Mathematics
Bibliografia
  • [1] Blakley G. R. Safeguarding cryptographic keys, AFIPS Conference Proceedings, 48, 1979, 313-317.
  • [2] Boldyreva A. Threshold signatures, multisignatures and blind signatures based on the Gap-Diffie-Hellman-Group signature scheme, LNCS 2567, 2003.
  • [3] Boneh D., Franklin M. Identity-based encryption from the Weil Pairing, Proc. Crypto, LNCS 2139, 2001, 213-229.
  • [4] Boneh D., Lynn B., Shacham H. Short Signatures from the Weil Pairing, J. Cryptology 17(4), 2004, 297-319.
  • [5] Desmedt Y. Society and group oriented cryptography: a new concept. In: Crypto'87, LNCS 293, 120-127, Springer-Verlag, 1988.
  • [6] Desmedt Y., Frankel Y.Threshold cryptosystems, In: Crypto'89, LNCS 435, 307-315, Springer-Verlag, 1990.
  • [7] Ghodosi H., Pieprzyk J., Safavi-Naini R. Dynamic Threshold Cryptosystems: A New Scheme in Group Oriented Cryptography, Proceedings of PRAGOCRYPT '96 -- International Conference on the Theory and Applications of Cryptology (J. Pribyl, ed.), Prague, CTU Publishing house, 1996, 370-379.
  • [8] Joux A. A one-round for tripartite Diffie-Hellman, Proceedings of ANTS IV, LNCS vol. 1838 (2000), 385-394.
  • [9] Miller V. Short programs for functions on curves, unpublished manuscript, 1986. [10]Menezes A., Okamoto T., Vanstone S., Reducing elliptic curve logarithms to logarithms in a finite field, IEEE Transactions on Information Theory, 39, 1993, 1639-1646.
  • [11] Nakielski B., Pomykała J. A., Pomykała J. M. A model of multi-threshold signature scheme, Journal of Telecommunications and Information Technology, 1, 2008, 51-55.
  • [12] Pietro R. Di, Mancini L. V., Zanin G. Efficient and Adaptive Threshold Signatures for Ad hoc networks, Electronic Notes in Theoretical Computer Science, 171,2007, 93-105.
  • [13] Pomykała J., Warchoł T. Threshold signatures in dynamic groups, Proceedings of FGCN, Jeju Island, Korea, IEEE Computer Society, 2007, 32-37. Dynamic
  • [14] B. Nakielski B, Pomykała J., Simple dynamic threshold decryption based on CRT and RSA, submitted.
  • [15] Rivest L., Shamir A., Adleman L. M. A Method for Obtaining Digital Signatures and Public-Key Cryptosystems, Communications of the ACM 21(2), 1978, 120-126.
  • [16] Shamir A. How to share a secret, Communications of the ACM, 22(1), 1979, 612-613.
  • [17] Silverman J. H. The Arithmetic of Elliptic Curves, Springer, 1986.
  • [18] J. Pomykała, T. Warchoł, Dynamic multi-threshold signature without the trusted dealer, International Journal of Multimedia and Ubiquitous Engineering, v. 3 no 3, 2008, 31-42.
  • [19] J. Pomykała, B. Źrałek, Threshold flexible signture in dynamic group, Proceedings of 15-th International Multi-Conference ACS 15-17, Miedzyzdroje, 15-17 October 2008.
Identyfikator YADDA
bwmeta1.element.baztech-930e985b-26ab-4fe8-bf1f-eb376f49eea1