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Abstract

The paper presents the idea of connecting the concepts of the Vapnik’s support vector
machine with Pawlak’s rough sets in one classification scheme. The hybrid system will
be applied to classifying data in the form of intervals and with missing values [1]. Both
situations will be treated as a cause of dividing input space into equivalence classes. Then,
the SVM procedure will lead to a classification of input data into rough sets of the desired
classes, i.e. to their positive, boundary or negative regions. Such a form of answer is also
called a three–way decision. The proposed solution will be tested using several popular
benchmarks.
Keywords: support vector machines, rough sets, missing features, interval data, three–
way decision

1 Introduction

The support vector machine (SVM) algorithm
has been proposed by Vladimir Vapnik [15]. It is,
in general, a linear classifier which separates ob-
jects x(τ), where τ = 1, . . . ,τmax, described by vec-
tor v(τ)∈V ⊂Rn into classes by n−1 dimensional
hyperplanes defined by selected reference samples
xr

ref. The samples are called support vectors. The
method is a direct continuation of the first pattern
recognition algorithm proposed by Fisher [3]. It can
also be perceived in reference to k nearest neighbor
method. The SVM allows for limiting the number
of reference samples stored and processed during a

classification process to a small number of support
vectors. Selection of the vectors is realized through
the maximization of the margin between the hyper-
plane described by a decision function and the ref-
erence samples. In the case of classes which are not
linearly separable, an additional kernel function K
is applied. Depending on the interpretation, it trans-
forms input space V or transforms the hyperplanes
into other separating shapes [14, 5, 13].

The rough set theory has been proposed by
Zdzisław Pawlak [11, 12]. The theory defines the
space of approximation in which groups of objects
are indistinguishable within a given level of de-
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scription. The groups are called equivalence classes
or atoms. The level of description and, as a con-
sequence, a division of the input space into atoms
is an effect of limited information or imperfection
of information about particular objects. Thus, the
classifier classifies not particular objects but whole
atoms. It builds classes from atoms as it is done
with bricks. Particular atoms can belong to the class
as a whole; they can be entirely outside the class
or partially belong to it. Similarly, there are three
possible results of classification. The object and its
atom can belong to the class, not belong there, or
the result is indefinite.

The general idea of combining the classic clas-
sification systems with the rough set theory has
been presented in [10]. It contains a description of
a few rough set based hybrid systems. There are
rough fuzzy and fuzzy rough classification systems,
rough neural network classifiers, and the rough
nearest neighbor classifier. They have been tested
in iterative and ensemble modes.

In the existing research, the concept of rough
support vector machine which works in such way
has not been considered, yet. Motivated by the
above fact, in this paper the combination of both
ideas is considered. The proposed rough support
vector machine, which is the subject of the paper,
is also the next step in developing rough set based
hybrid systems.

The rough support vector machine classifier
proposed in the paper has some properties common
for all rough set based hybrid systems mentioned
above. The object under classification is described
by values or intervals. The width of intervals repre-
sents imperfection of the description. The interval
which covers the whole domain of an attribute rep-
resents the missing value. It is assumed that the in-
tervals always contain the true value of an attribute.
In this class of the classifying systems, a misclassi-
fication is never the result of the imperfection of the
object description. The change of width of intervals
never results in a change of classification. How-
ever, it can lead to an indefinite result. This property
positively distinguished the rough set–based hybrid
systems from all solutions based on marginalization
and imputation.

There are many modifications of the support
vector machines algorithm. They allow realizing
the non–linear and multi–class classification [4, 18]

or improve the algorithm performance [6, 7, 19].
The rough set based hybrid system proposed in this
paper is based on the basic version of the algorithm.
However, there are no obstacles to transfer the idea
to other versions of the algorithm.

The paper is organized as follows. Section 2
contains a brief description of the basic version of
the support vector machines. Section 3 covers the
main idea presented in the paper, i.e. the rough sup-
port vector machine. It begins with some formal el-
ements coming from rough set theory, and then the
hybrid system is defined. The performance of clas-
sification is illustrated in Section 4 with the use of a
few classic benchmarks. The final Section contains
conclusions and remarks. Plans for further research
on the subject are outlined as well.

2 Classic support vector machines

In the basic version of the method, two linearly
separable classes are considered. More generally,
the separation of a single class among all others is
taken into account — the ”one against all” problem.
The aim is to determine the hyperplane

wT v+w0 = 0, (1)

which realises the separation [2, 9, 15, 16]. In the
multiclass classification, special versions of the al-
gorithm have been developed [17]. However, the
individual hyperplane determined for each class can
be also applied.

The parameters of hyperplane (1) should be ad-
justed to separate the samples from class ω j from
the other ones and to maximize the distance be-
tween the hyperplane and the closest samples from
both classes. Moreover, the distance should be
equal for both classes. To satisfy such requirements
two hyperplanes parallel to (1) are defined as fol-
lows

wT v+w0 − c = 0 (2)

and
wT v+w0 + c = 0. (3)

For particular objects x(τ), the following conditions
must be met

wT v(τ)+w0 − c ≥ 0 for x(τ) ∈ ω j (4)

and

wT v(τ)+w0 + c ≤ 0 for x(τ) /∈ ω j. (5)
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Condition (4) requests that all samples that belong
to class ω j are on one side of hyperplane (2) or lie
on it. Condition (5) requests that all samples that do
not belong to class ω j are on one side of hyperplane
(3) or lie on it. Because hyperplane (1) is the sep-
aration boundary, both condition must be met also
for c = 0. The samples which lay on hyperplanes
(2) and (3) are the support vectors.

The distance between hyperplanes (2) and (3)
(the margin of separation) is equal to

ρ =
2c
‖w‖ . (6)

Thus, the goal is to find parameters w, w0, and
c which meet conditions (4) and (5) and maximize
distance (6).

Q j (w,w0) =
1
2 wT w

−∑tmax
t=1 αt (d j(τ)(wT v(τ)+w0)− c) ,

(7)

where d j(τ) = 1 for x(τ) ∈ ω j and d j(τ) = −1 for
x(τ) /∈ ω j. The optimization algorithm looks for
parameters w and w0 which minimize Q j and La-
grange multipliers αt maximizing the function. The
non–zero multipliers determine the support vectors.
All others can be omitted in the SVM classifier.

When we assume that c = 1, the task of min-
imizing Qj can be solved in two steps. Firstly, the
algorithm should find non–negative values of multi-
pliers αt which maximize the following expression

Qα j =−
tmax

∑
t=1

tmax

∑
t ′=1

αtαt ′d j(τ)d j(τ ′)vT
t ′ vt +

tmax

∑
t=1

αt (8)

and fulfill the restriction

m

∑
t=0

αtd j(τ) = 0. (9)

Secondly, coefficients w and w0 are determined

w =
tmax

∑
t=1

αtd(τ)v(τ). (10)

The decision of the SVM classifier is expressed as
follows

z j(τ) = sgn
(
wT v(τ)+w0

)
=

= sgn
(

∑r : xr
ref∈SV αtdr

j(τ)vrT
refv(τ)+w0

)
.

(11)

When the classes are not linearly separable, the
transformation by a kernel function is applied and
the decision is expressed by

z j(τ) = sgn

(
∑

r : xr
ref∈SV

αrdr
jK

(
vrT

refv(τ)
)
+w0

)
.

(12)

3 Rough support vector machines

The general form of the SVM classifier pre-
sented above works properly when the description
of object x(τ) under classification described by a
vector of features values v(τ) as well as elements
of support vectors vref are real values — v j(τ) ∈
R ∩ [vimin,vimax] and vr

refi ∈ R ∩ [vimin,vimax]. In
such case the decision of the classifier is unequiv-
ocal. However, when in vector v(τ) or vector vref
at least one interval or unknown value occurs, the
decision might be not unequivocal because the true
value of such feature is unknown and can take
any value inside interval vi(τ) =

[
vi(τ),vi(τ)

]
or

even [vimin,vimax]. The decision is unequivocal only
when for all values in the interval the classifications
are the same. However, in general, it is not possi-
ble to test an infinite number of values. The set of
features with known and real values is denoted by
P, the set of features with unknown or interval val-
ues — by G. The set of all considered features is
denoted by Q = P∪G. Vi is the set of the values
obtained by feature vi, so Vi = [vimin,vimax].

The goal of the proposed solution is to adapt
the SVM classifier to work with interval data. In
such case the object is classified into rough classes{

P̃ω j, P̃ω j

}
, which are approximations of classes

ω j. As a result, the object is classified to one of the
three regions of class ω j:

– positive region Pos(ω j),

– negative region Neg(ω j),

– boundary region Bnd (ω j).

Thus, the rough SVM classifier should find the
lowest and the highest values of z j(τ), expressed in
equation (11), which can be obtained for all values
vi(τ) from interval vi(τ) =

[
vi(τ),vi(τ)

]
. The re-

lationship between z j(τ) and vi(τ) is monotonous
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and the derivative of expression inside function sgn
with respect to vi(τ) is constant, i.e.

∂wT v(τ)+w0

∂vi(τ)
= wi, (13)

where wi = ∑
r : xr

ref∈SV
αrdr

jv
r
refi.

Thanks to this, the answer of the rough SVM
can be expressed by interval [z(τ),z(τ)] calculated
using only the lowest and the highest values in in-
tervals vi(τ). Thus, the left bound of the answer is
calculated by the expression

z(τ) = sgn
(
wT v∗(τ)+w0

)
=

= sgn
(

∑r : xr
ref

αrdrvrT
refv∗(τ)+w0

) (14)

and the right bound as follows

z(τ) = sgn
(
wT v∗(τ)+w0

)
=

= sgn
(

∑r : xr
ref

αrdrvrT
refv∗(τ)+w0

)
,

(15)

where v∗(τ) = [v1∗(τ), . . . ,vn∗(τ)], v∗(τ) =
[v∗1(τ), . . . ,v∗n(τ)], and

v∗i(τ) =

{
vi(τ) if wi > 0
vi(τ) if wi < 0

(16)

v∗i (τ) =

{
vi(τ) if wi < 0
vi(τ) if wi > 0

(17)

In the case of using kernel K to realize non–
linear classification, the answer in the form of inter-
val [z(τ),z(τ)] is expressed in a similar way, i.e.

z(τ) = sgn

(
∑

r : xr
ref

αrdrK (vr
ref,v∗(τ))+w0

)
(18)

and

z(τ) = sgn

(
∑

r : xr
ref

αrdrK (vr
ref,v

∗(τ))+w0

)
. (19)

However, the selection of values v∗(τ) and v∗(τ)
is more complicated and is not restricted to two
boundary values vi(τ) and vi(τ). They should meet
the conditions

K
(
vrT

ref,v∗(τ)
)
= inf

v̂i∈[vi(τ),vi(τ)]
i : ci∈G

K
(
vrT

ref, v̂(τ)
)

, (20)

K
(
vrT

ref,v
∗(τ)

)
= sup

v̂i∈[vi(τ),vi(τ)]
i : ci∈G

K
(
vrT

ref, v̂(τ)
)

, (21)

where v̂(τ) = [v̂1, . . . , v̂n], but for ci ∈ P value v̂i is
just equal to vi(τ).

In the case of the Gaussian kernel

K (vr
ref,v(τ)) = e−β |vr

ref−v(τ)|p

(22)

value v∗i is selected from two–element set{
vi(τ),vi(τ)

}
, which can be written as follows

K
(
vrT

ref,v(τ)
)
= inf

v̂i∈{vi(τ),vi(τ)}
i : ci∈G

K
(
vrT

ref, v̂(τ)
)

, (23)

and value v∗i obtains value vr
refi if only vrefir ∈[

vi(τ),vi(τ)
]
, thus

K
(
vrT

ref,v(τ)
)
= K

(
vrT

ref, v̂(τ)
)

: v̂i = vr
refi, i : ci ∈ G.

(24)

As a result of applying function sgn, in equa-
tions (14), (15), (18), and (19), values z j(τ) and
z j(τ) are from set {−1,0,1}. Obviously, inequality
z j(τ) ≤ z j(τ) occurs. Finally, depending on inter-

val
[
z j(τ),z j(τ)

]
, object x(τ) is classified to one of

the regions,m i.e. the positive, negative or boundary
region of class ω j, as follows

x(τ) ∈




PosP (ω j) if
[
z j,z j

]
= [1,1]

NegP (ω j) if
[
z j,z j

]
= [−1,−1]

BndP (ω j) if 0 ∈
[
z j,z j

] . (25)

The complete missing values can be treated in
the same way as the values in the form of the in-
terval. In such a solution the knowledge about the
range of variation of subsequent features is applied,
i.e.

ct ∈ P ⇒ [vi(τ),vi(τ)] = [vimin,vimax] . (26)

It is worth noting that the behavior of the classi-
fier in the case of missing values should take into
account the nature of such lack. Generally, the
three types of missing values are distinguished [8]
depending on the additional knowledge about the
reason and relationships between the features with
missing values and others, and they are MCAR
(Missing Completely At Random), MAR (Missing
At Random), and MNAR (Missing Not At Ran-
dom). This knowledge can be used to narrowing
intervals [vi(τ),vi(τ)]. Both missing and interval
values can occur and be served by the rough SVM
classifier simultaneously.



51Robert K. Nowicki, Konrad Grzanek, Yoichi Hayashi

and the derivative of expression inside function sgn
with respect to vi(τ) is constant, i.e.

∂wT v(τ)+w0

∂vi(τ)
= wi, (13)

where wi = ∑
r : xr

ref∈SV
αrdr

jv
r
refi.

Thanks to this, the answer of the rough SVM
can be expressed by interval [z(τ),z(τ)] calculated
using only the lowest and the highest values in in-
tervals vi(τ). Thus, the left bound of the answer is
calculated by the expression

z(τ) = sgn
(
wT v∗(τ)+w0

)
=

= sgn
(

∑r : xr
ref

αrdrvrT
refv∗(τ)+w0

) (14)

and the right bound as follows

z(τ) = sgn
(
wT v∗(τ)+w0

)
=

= sgn
(

∑r : xr
ref

αrdrvrT
refv∗(τ)+w0

)
,

(15)

where v∗(τ) = [v1∗(τ), . . . ,vn∗(τ)], v∗(τ) =
[v∗1(τ), . . . ,v∗n(τ)], and

v∗i(τ) =

{
vi(τ) if wi > 0
vi(τ) if wi < 0

(16)

v∗i (τ) =

{
vi(τ) if wi < 0
vi(τ) if wi > 0

(17)

In the case of using kernel K to realize non–
linear classification, the answer in the form of inter-
val [z(τ),z(τ)] is expressed in a similar way, i.e.

z(τ) = sgn

(
∑

r : xr
ref

αrdrK (vr
ref,v∗(τ))+w0

)
(18)

and

z(τ) = sgn

(
∑

r : xr
ref

αrdrK (vr
ref,v

∗(τ))+w0

)
. (19)

However, the selection of values v∗(τ) and v∗(τ)
is more complicated and is not restricted to two
boundary values vi(τ) and vi(τ). They should meet
the conditions

K
(
vrT

ref,v∗(τ)
)
= inf

v̂i∈[vi(τ),vi(τ)]
i : ci∈G

K
(
vrT

ref, v̂(τ)
)

, (20)

K
(
vrT

ref,v
∗(τ)

)
= sup

v̂i∈[vi(τ),vi(τ)]
i : ci∈G

K
(
vrT

ref, v̂(τ)
)

, (21)

where v̂(τ) = [v̂1, . . . , v̂n], but for ci ∈ P value v̂i is
just equal to vi(τ).

In the case of the Gaussian kernel

K (vr
ref,v(τ)) = e−β |vr

ref−v(τ)|p

(22)

value v∗i is selected from two–element set{
vi(τ),vi(τ)

}
, which can be written as follows

K
(
vrT

ref,v(τ)
)
= inf

v̂i∈{vi(τ),vi(τ)}
i : ci∈G

K
(
vrT

ref, v̂(τ)
)

, (23)

and value v∗i obtains value vr
refi if only vrefir ∈[

vi(τ),vi(τ)
]
, thus

K
(
vrT

ref,v(τ)
)
= K

(
vrT

ref, v̂(τ)
)

: v̂i = vr
refi, i : ci ∈ G.

(24)

As a result of applying function sgn, in equa-
tions (14), (15), (18), and (19), values z j(τ) and
z j(τ) are from set {−1,0,1}. Obviously, inequality
z j(τ) ≤ z j(τ) occurs. Finally, depending on inter-

val
[
z j(τ),z j(τ)

]
, object x(τ) is classified to one of

the regions,m i.e. the positive, negative or boundary
region of class ω j, as follows

x(τ) ∈




PosP (ω j) if
[
z j,z j

]
= [1,1]

NegP (ω j) if
[
z j,z j

]
= [−1,−1]

BndP (ω j) if 0 ∈
[
z j,z j

] . (25)

The complete missing values can be treated in
the same way as the values in the form of the in-
terval. In such a solution the knowledge about the
range of variation of subsequent features is applied,
i.e.

ct ∈ P ⇒ [vi(τ),vi(τ)] = [vimin,vimax] . (26)

It is worth noting that the behavior of the classi-
fier in the case of missing values should take into
account the nature of such lack. Generally, the
three types of missing values are distinguished [8]
depending on the additional knowledge about the
reason and relationships between the features with
missing values and others, and they are MCAR
(Missing Completely At Random), MAR (Missing
At Random), and MNAR (Missing Not At Ran-
dom). This knowledge can be used to narrowing
intervals [vi(τ),vi(τ)]. Both missing and interval
values can occur and be served by the rough SVM
classifier simultaneously.

ROUGH SUPPORT VECTOR MACHINE FOR . . .

4 Illustrative examples

The proposed rough support vector machine
classifier has been tested using classic benchmarks
taken from the machine learning repository of the
University of California at Irvine. The three of them
have been selected for presentation, i.e. Glass Iden-
tification, Pima Indian Diabetes diagnostics and
Wisconsin Breast Cancer diagnostics. They have
9, 9, and 8 input attributes, respectively. The two–
class versions have been used. The support vector
machines have been set for each benchmark when
all the values of their attributes were represented by
real numbers. During classification, the input val-
ues are presented in the form of intervals of various
widths, which were generated around the true val-
ues. The missing values are simulated for all combi-
nations of input attributes. All the experiments were
performed in the 10–fold cross–validation mode.

Tables 1–3 contain the results for the experi-
ments with various width of input intervals for sub-
sequent benchmarks including both reference and
test samples. The data in the tables as well as the
visualization presented in Figures 1, 3 and 5 show
that in the case of reference samples the classifiers
are never wrong, but refuse to respond when the
width of interval values is too high. However, the
acceptable width is different for particular samples.
The cases of misclassification occur for test sam-
ples. When the width of input values is high, par-
ticular samples remain without a decision. It applies
to samples which are previously classified correctly
as well as incorrectly.

Table 1. The results of the Glass Identification test
using the rough support vector classifier

Width of Decisions [%]intervals
[%] correct incorrect no decision

0 100.0/92.1 0.0/7.9 0.0/0.0
1 100.0/91.1 0.0/7.5 0.0/1.4
2 100.0/90.2 0.0/6.5 0.0/3.3
4 88.3/85.0 0.0/5.6 11.7/9.3
8 64.8/65.0 0.0/3.7 35.2/31.3
16 17.9/16.4 0.0/0.9 82.1/82.7
32 4.0/5.1 0.0/0.0 96.0/94.9
64 0.0/0.0 0.0/0.0 100.0/100.0

Figure 1. The results of the Glass Identification
test using the rough support vector classifier —

reference samples

Figure 2. The results of the Glass Identification
test using the rough support vector classifier —

testing samples

Table 2. The results of Pima Indian Diabetes
diagnostics using the rough support vector

classifier

Width of Decisions [%]intervals
[%] correct incorrect no decision

0 100.0/65.6 0.0/34.4 0.0/0.0
1 75.4/59.0 0.0/27.3 24.6/13.7
2 55.3/52.5 0.0/20.6 44.7/27.0
4 38.2/37.5 0.0/14.1 61.8/48.4
8 15.2/14.5 0.0/4.8 84.8/80.7
16 1.3/1.2 0.0/0.7 98.7/98.2
32 0.0/0.1 0.0/0.0 100.0/99.9
64 0.0/0.0 0.0/0.0 100.0/100.0
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Figure 3. The results of Pima Indian Diabetes
diagnostics using the rough support vector

classifier — reference samples

Figure 4. The results of Pima Indian Diabetes
diagnostics using the rough support vector

classifier — testing samples

Table 3. The results of Wisconsin Breast Cancer
diagnostics using the rough support vector

classifier

Width of Decisions [%]intervals
[%] correct incorrect no decision

0 100.0/95.0 0.0/5.0 0.0/0.0
1 100.0/94.6 0.0/4.7 0.0/0.7
2 100.0/94.1 0.0/4.5 0.0/1.3
4 100.0/92.8 0.0/3.7 0.0/3.5
8 94.1/90.2 0.0/1.6 5.9/8.2
16 81.4/80.8 0.0/0.4 18.6/18.7
32 16.5/15.4 0.0/0.0 83.5/84.6
64 4.9/4.8 0.0/0.0 95.1/95.2

Figure 5. The results of Wisconsin Breast Cancer
diagnostics using the rough support vector

classifier — reference samples

Figure 6. The results of Wisconsin Breast Cancer
diagnostics using the rough support vector

classifier — testing samples

Tables 4–6 contain the results for the tests with
missing values. They have been visualized in Fig-
ures 7–11. The experiments have been performed
with the same datasets and the same classifiers as
the previous ons. So, the classifiers are never wrong
in the case of reference samples as in the previous
tests. The results show that even single missing
values leads to an indefinite answer. This distin-
guished negatively the rough set support vector ma-
chine against other rough set–based hybrid systems
described in [10].



53Robert K. Nowicki, Konrad Grzanek, Yoichi Hayashi

Figure 3. The results of Pima Indian Diabetes
diagnostics using the rough support vector

classifier — reference samples

Figure 4. The results of Pima Indian Diabetes
diagnostics using the rough support vector

classifier — testing samples

Table 3. The results of Wisconsin Breast Cancer
diagnostics using the rough support vector

classifier

Width of Decisions [%]intervals
[%] correct incorrect no decision

0 100.0/95.0 0.0/5.0 0.0/0.0
1 100.0/94.6 0.0/4.7 0.0/0.7
2 100.0/94.1 0.0/4.5 0.0/1.3
4 100.0/92.8 0.0/3.7 0.0/3.5
8 94.1/90.2 0.0/1.6 5.9/8.2

16 81.4/80.8 0.0/0.4 18.6/18.7
32 16.5/15.4 0.0/0.0 83.5/84.6
64 4.9/4.8 0.0/0.0 95.1/95.2

Figure 5. The results of Wisconsin Breast Cancer
diagnostics using the rough support vector

classifier — reference samples

Figure 6. The results of Wisconsin Breast Cancer
diagnostics using the rough support vector

classifier — testing samples

Tables 4–6 contain the results for the tests with
missing values. They have been visualized in Fig-
ures 7–11. The experiments have been performed
with the same datasets and the same classifiers as
the previous ons. So, the classifiers are never wrong
in the case of reference samples as in the previous
tests. The results show that even single missing
values leads to an indefinite answer. This distin-
guished negatively the rough set support vector ma-
chine against other rough set–based hybrid systems
described in [10].

ROUGH SUPPORT VECTOR MACHINE FOR . . .

Table 4. The results of the Glass Identification test
using the rough support vector classifier

Number Decisions [%]of missing
values correct incorrect no decision

0 100.0/92.1 0.0/7.9 0.0/0.0
1 6.4/6.5 0.0/0.0 93.6/93.5

2-9 0.0/0.0 0.0/0.0 100.0/100.0

Figure 7. The results of the Glass Identification
test using the rough support vector classifier —

reference samples

Figure 8. The results of the Glass Identification
test using the rough support vector classifier —

testing samples

Table 5. The results of Pima Indian Diabetes
diagnostics using the rough support vector

classifier

Number Decisions [%]of missing
values correct incorrect no decision

0 100.0/95.0 0.0/5.0 0.0/0.0
1 21.6/21.7 0.0/0.0 78.4/78.3
2 6.4/6.6 0.0/0.0 93.6/93.4
3 1.6/1.6 0.0/0.0 98.4/98.4
4 0.2/0.3 0.0/0.0 99.8/99.7

5-9 0.0/0.0 0.0/0.0 100.0/100.0

Figure 9. The results of Pima Indian Diabetes
diagnostics using the rough support vector

classifier — reference samples

Figure 10. The results of Pima Indian Diabetes
diagnostics using the rough support vector

classifier — testing samples
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Table 6. The results of Wisconsin Breast Cancer
diagnostics using the rough support vector

classifier

Number Decisions [%]of missing
values correct incorrect no decision

0 100.0/65.6 0.0/34.4 0.0/0.0
1 0.3/0.3 0.0/0.0 99.7/99.7

2-8 0.0/0.0 0.0/0.0 100.0/100.0

Figure 11. The results of Wisconsin Breast Cancer
diagnostics using the rough support vector

classifier — reference samples

Figure 12. The results of Wisconsin Breast Cancer
diagnostics using the rough support vector

classifier — testing samples

Conclusions

The paper extends the idea presented in [10] to
support vector machines. The rough support vec-
tor machine has been defined. It has been also ex-
plained how to derive and interpret the result of

classification when the description of the object un-
der classification represents a whole equivalence
class. The results of experiments confirm that in
the case of rough support vector machines, misclas-
sification never results from the imperfection of the
object description. It is a characteristic feature of all
rough set–based classification systems. The exper-
iments with various widths of input intervals have
shown that the classifier is able to make the deci-
sion even with a high width. However, the accept-
able width is different for particular samples. The
results are similar to other types of rough set–based
classification systems.

The high sensibility of the proposed system to
missing values is undoubtedly an unusual surprise.
It has also been confirmed by the tests with other
data sets. In contrast to other rough set–based clas-
sification systems, the rough support vector ma-
chines do not classify the input data when even sin-
gle missing values occur.

The future work on the rough support vector
machines should focus on creating a classifier with
imperfect data, i.e. selecting the support vector
when the reference samples are described by inter-
vals and contain missing values. It is already possi-
ble in the case of other rough set–based classifica-
tion systems. The proposed system should be also
tested as a part of an ensemble which is the main
application of other systems in the group.
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