PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Importance of the assessment of knee joint function after a stroke

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study aimed to assess knee joint function in post-stroke patients using wireless motion sensors and functional tests. This type of evaluation may be important for improving gait quality. Methods: The study included 25 post-stroke patients (age 53.5 ± 8.4 years) and 25 healthy controls (age 51.1 ± 7.7 years). Knee function was assessed using passive range of motion (PROM), active range of motion (AROM) at any speed, maximum speed AROM (FROM), and joint position sense (JPS). Orthyo® motion sensors and a mobile app were used for measurements. The following functional tests have been used: Five Times Sit-to-Stand Test (FTSST) and Timed Up and Go Test (TUG). Results: Before rehabilitation, the average values of PROM ( p = 0.006), AROM ( p = 0.005), FROM average ( p < 0.001) and maximal velocity ( p < 0.001), JPS 30° ( p = 0.002), JPS 60° ( p = 0.002) and JPS 80° ( p < 0.001) were significantly worse in the paretic limb than in healthy people. The applied rehabilitation contributed to improving the PROM and AROM and the average and maximum speed of rapid movement in the knee joint. Proprioception (JPS) also improved. Only the average ( p < 0.001) and maximum speed ( p < 0.001) in the FROM test in the knee joint of the paretic limb after rehabilitation significantly differed from the values in healthy people. The patients’ performance (functional tests) improved after rehabilitation (TUG ( p < 0.001) and FTSST ( p < 0.001)), but it did not reach the level of healthy people. Conclusions: The function of the knee joint in the paretic limb is significantly impaired and requires inclusion in the therapy plan in the early period after stroke.
Rocznik
Strony
147--158
Opis fizyczny
Bibliogr. 46 poz., rys., tab., wykr.
Twórcy
  • Department of Rehabilitation and Physiotherapy, Poznan University of Medical Sciences, Poznań, Poland.
autor
  • Department of Rehabilitation and Physiotherapy, Poznan University of Medical Sciences, Poznań, Poland.
  • Department of Rehabilitation and Physiotherapy, Poznan University of Medical Sciences, Poznań, Poland.
  • Department of Rehabilitation and Physiotherapy, Poznan University of Medical Sciences, Poznań, Poland.
Bibliografia
  • [1] AGUSTÍN R.M.-S., CRISOSTOMO M.J., SÁNCHEZ-MARTÍNEZ M.P., MEDINA-MIRAPEIX F., Responsiveness and Minimal Clinically Important Difference of the Five Times Sit-to-Stand Test in Patients with Stroke, International Journal of Environmental Research and Public Health, 2021, 18 (5), 2314.
  • [2] AIDAR F.J., DE OLIVEIRA R.J., SILVA A.J., DE MATOS D.G., MAZINI FILHO M.L., HICKNER R.C. et al., The influence of resistance exercise training on the levels of anxiety in ischemic stroke, Stroke Res. Treat., 2012, 298375.
  • [3] ALGHADIR A.H., AL-EISA E.S., ANWER S., SARKAR B., Reliability, validity, and responsiveness of three scales for measuring balance in patients with chronic stroke, BMC Neurol., 2018, 18 (1), 141.
  • [4] APRILIYASARI R.W., VAN TRUONG P., TSAI P.-S., Effects of proprioceptive training for people with stroke: A meta-analysis of randomized controlled trials, Clinical Rehabilitation, 2022, 36 (4), 431–448.
  • [5] BALABAN B., TOK F., Gait Disturbances in Patients With Stroke, PM and R, 2014, 6 (7), 635–642.
  • [6] BHAGUBAI M.M.C., WOLTERINK G., SCHWARZ A., HELD J.P.O., VAN BEIJNUM B.J.F., VELTINK P.H., Quantifying Pathological Synergies in the Upper Extremity of Stroke Subjects with the Use of Inertial Measurement Units: A Pilot Study, IEEE J. Transl. Eng. Heal Med., 2021, 9, 2100211.
  • [7] BOUKHENNOUFA I., ZHAI X., UTTI V., JACKSON J., MCDONALD-MAIER K.D., Wearable sensors and machine learning in post-stroke rehabilitation assessment: A systematic review, Biomed. Signal Process Control [Internet], 2022, 71, 103197.
  • [8] CAMPANINI I., MERLO A., DAMIANO B., A method to differentiate the causes of stiff-knee gait in stroke patients, Gait Posture, 2013, 38 (2), 165–169.
  • [9] CHANTRAINE F., SCHREIBER C., PEREIRA J.A.C., KAPS J., DIERICK F., Classification of Stiff-Knee Gait Kinematic Severity after Stroke Using Retrospective k-Means Clustering Algorithm, J. Clin. Med., 2022, 11 (21), 6270.
  • [10] CHEN K., ZHU S., TANG Y., LAN F., LIU Z., Advances in balance training to prevent falls in stroke patients: a scoping review, Front Neurol., 2024, 15, 1167954.
  • [11] CHIA F.S., KUYS S., LOW CHOY N., Sensory retraining of the leg after stroke: systematic review and meta-analysis, Clin. Rehabil., 2019, 33 (6), 964–679.
  • [12] CHLEBUŚ E., WAREŃCZAK A., MIEDZYBLOCKI M., LISIŃSKI P., The usefulness of isometric protocol for foot flexors and extensors in assessing the effects of 16-week rehabilitation regiment in poststroke patients, Biomed. Eng. Online, 2019, 18 (1), 57.
  • [13] CHU C.L., LEE T.H., CHEN Y.P., RO L.S., HSU J.L., CHU Y.C. et al., Recovery of walking ability in stroke patients through postacute care rehabilitation, Biomed. J., 2023, 46 (4), 100550.
  • [14] DE MELO T.A., DUARTE A.C.M., BEZERRA T.S., FRANÇA F., SOARES N.S., BRITO D., The five times sit-to-stand test: Safety and reliability with older intensive care unit patients at discharge, Rev. Bras. Ter. Intensiva, 2019, 31 (1), 27–33.
  • [15] DE QUIRÓS M., DOUMA E.H., VAN DEN AKKER-SCHEEK I., LAMOTH C.J.C., MAURITS N.M., Quantification of Movement in Stroke Patients under Free Living Conditions Using Wearable Sensors: A Systematic Review, Sensors, 2022, 22 (3), 1050.
  • [16] DEAN J.C., KAUTZ S.A., Foot placement control and gait instability among people with stroke, J. Rehabil. Res. Dev., 2015, 52 (5), 577–590.
  • [17] GEERARS M., MINNAAR-VAN DER FEEN N., HUISSTEDE B.M.A., Treatment of knee hyperextension in post-stroke gait. A systematic review, Gait Posture, 2022, 91, 137–148.
  • [18] GIL-CASTILLO J., BARRIA P., AGUILAR CÁRDENAS R., BALETA ABARZA K., ANDRADE GALLARDO A., BISKUPOVIC MANCILLA A. et al., A Robot-Assisted Therapy to Increase Muscle Strength in Hemiplegic Gait Rehabilitation, Front Neurorobot., 2022, 16, 1–13.
  • [19] GOMEZ-CUARESMA L., LUCENA-ANTON D., GONZALEZMEDINA G., MARTIN-VEGA F.J., GALAN-MERCANT A., LUQUE- -MORENO C., Effectiveness of stretching in post-stroke spasticity and range of motion: Systematic review and meta-analysis, J. Pers. Med., 2021, 11 (11), 1074.
  • [20] GOŚLIŃSKA J., WAREŃCZAK A., MIEDZYBLOCKI M., HEJDYSZ K., ADAMCZYK E., SIP P. et al., Wireless motion sensors – useful in assessing the effectiveness of physiotherapeutic methods used in patients with knee osteoarthritis – preliminary report, Sensors (Switzerland), 2020, 20 (8), 1–13.
  • [21] GRAY V., RICE C.L., GARLAND S.J., Factors that influence muscle weakness following stroke and their clinical implications: a critical review, Physiother. Can., 2012, 64 (4), 415–426.
  • [22] GUNNING E., USZYNSKI M.K., Effectiveness of the Proprioceptive Neuromuscular Facilitation Method on Gait Parameters in Patients With Stroke: A Systematic Review, Arch. Phys. Med. Rehabil., 2019, 100 (5), 980–986.
  • [23] GUZIK A., DRUŻBICKI M., WOLAN-NIERODA A., TUROLLA A., KIPER P., Estimating minimal clinically important differences for knee range of motion after stroke, J. Clin. Med., 2020, 9 (10), 1–14.
  • [24] HSU W.C., CHANG C.C., LIN Y.J., YANG F.C., LIN L.F., CHOU K.N., The Use of Wearable Sensors for the Movement Assessment on Muscle Contraction Sequences in Post-Stroke Patients during Sit-to-Stand, Sensors, 2019, 19 (3), 657.
  • [25] HWANG J.S., LEE D.S., CHO Y.J., HAN N.M., KIM H.D., Measurement of Proprioception of the Knee in Hemiplegic Patients Using an Isokinetic Dynamometer, J. Korean Acad. Rehabil. Med., 2010, 34, 27–33.
  • [26] HUNNICUTT J.L., GREGORY C.M., Skeletal muscle changes following stroke: a systematic review and comparison to healthy individuals, Top Stroke Rehabil., 2017, 24 (6), 463–471.
  • [27] IMANAWANTO K., ANDRIANA M., SATYAWATI R., Correlation Between Joint Position Sense, Threshold to Detection of Passive Motion of The Knee Joint And Walking Speed of Post- Stroke Patient, Int. J. Res. Publ., 2021, 83, 110–118.
  • [28] KEAR B.M., GUCK T.P., MCGAHA A.L., Timed up and go (TUG) test: Normative reference values for ages 20 to 59 years and relationships with physical and mental health risk factors, J. Prim. Care. Community Health 2017, 8 (1), 9–13. 158 A. WAREŃCZAK-PAWLICKA et al.
  • [29] KJELLSTRÖM T., NORRVING B., SHATCHKUTE A., Helsingborg declaration 2006 on European Stroke Strategies, Cerebrovasc. Dis., 2007, 23 (2–3), 229–241.
  • [30] KUMAR Y., YEN S.C., TAY A., LEE W., GAO F., ZHAO Z. et al., Wireless wearable range-of-motion sensor system for upper and lower extremity joints: A validation study, Healthc. Technol. Lett., 2015, 2 (1), 12–17.
  • [31] LATTOUF N.A., TOMB R., ASSI A., MAYNARD L., MESURE S., Eccentric training effects for patients with post-stroke hemiparesis on strength and speed gait: A randomized controlled trial, NeuroRehabilitation, 2021, 48 (4), 513–522.
  • [32] LEE K.E., CHOI M., JEOUNG B., Effectiveness of Rehabilitation Exercise in Improving Physical Function of Stroke Patients: A Systematic Review, Int. J. Environ. Res. Public Health, 2022, 19 (19), 12739.
  • [33] LI S., Ankle and Foot Spasticity Patterns in Chronic Stroke Survivors with Abnormal Gait, Toxins (Basel), 2020, 12 (10), 646.
  • [34] LI S., Stiff Knee Gait Disorders as Neuromechanical Consequences of Spastic Hemiplegia in Chronic Stroke, Toxins (Basel), 2023, 15 (3), 204.
  • [35] LISIŃSKI P., WAREŃCZAK A., HEJDYSZ K., SIP P., GOŚLIŃSKI J., OWCZAREK P. et al., Mobile applications in evaluations of knee joint kinematics: A pilot study, Sensors (Switzerland), 2019, 19 (17), 1–13.
  • [36] MERCER V.S., FREBURGER J.K., CHANG S.H., PURSER J.L., Step test scores are related to measures of activity and participation in the first 6 months after stroke, Physical Therapy, 2009, 1061–1071.
  • [37] MOHAN D.M., KHANDOKER A.H., WASTI S.A., ISMAIL IBRAHIM ISMAIL ALALI S., JELINEK H.F., KHALAF K., Assessment Methods of Post-stroke Gait: A Scoping Review of Technology-Driven Approaches to Gait Characterization and Analysis, Front. Neurol., 2021, 12, 650024.
  • [38] PANELLA M., MARCHISIO S., BRAMBILLA R., VANHAECHT K., DI STANISLAO F., A cluster randomized trial to assess the effect of clinical pathways for patients with stroke: Results of the clinical pathways for effective and appropriate care study, BMC Med., 2012, 10, 71.
  • [39] PEISHUN C., HAIWANG Z., TAOTAO L., HONGLI G., YU M., WANRONG Z., Changes in Gait Characteristics of Stroke Patients with Foot Drop after the Combination Treatment of Foot Drop Stimulator and Moving Treadmill Training, Neural. Plast., 2021, 9480957.
  • [40] PERSSON C.U., DANIELSSON A., SUNNERHAGEN K.S., GRIMBY-EKMAN A., Hansson P.O., Timed Up & Go as a measure for longitudinal change in mobility after stroke – Postural Stroke Study in Gothenburg (POSTGOT), J. Neuroeng. Rehabil., 2014, 11, 83.
  • [41] PETERS D.M., O’BRIEN E.S., KAMRUD K.E., ROBERTS S.M., ROONEY T.A., THIBODEAU K.P. et al., Utilization of wearable technology to assess gait and mobility post-stroke: a systematic review, J. Neuroeng. Rehabil. [Internet], 2021, 18 (1), 67.
  • [42] SIJOBERT B., AZEVEDO C., PONTIER J., GRAF S., FATTAL C., A Sensor-Based Multichannel FES System to Control Knee Joint and Reduce Stance Phase Asymmetry in Post-Stroke Gait, Sensors (Basel), 2021, 21 (6), 2134.
  • [43] SOUISSI H., ZORY R., BREDIN J., ROCHE N., GERUS P., Co-contraction around the knee and the ankle joints during post-stroke gait, Eur. J. Phys. Rehabil. Med., 2018, 54 (3), 380–387.
  • [44] STANTON R., ADA L., DEAN C.M., PRESTON E., Biofeedback improves activities of the lower limb after stroke: a systematic review, J. Physiother., 2011, 57 (3), 145–155.
  • [45] TSUSHIMA Y., FUJITA K., MIAKI H., KOBAYASHI Y., Effects of increasing non-paretic step length on paretic leg movement during hemiparetic gait: a pilot study, J. Phys. Ther. Sci., 2022, 34 (8), 590–595.
  • [46] ZHANG L., LIU G., HAN B., WANG Z., YAN Y., MA J. et al., Knee Joint Biomechanics in Physiological Conditions and How Pathologies Can Affect It: A Systematic Review, Appl. Bionics Biomech., 2020, 7451683.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9308fcea-e339-4078-9fdc-53cc7a4f54dc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.