PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Capture of plastic litter by sluice gate and trash racks

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This pilot study investigated the amounts of plastic litter captured by water structures. It is based on hydraulic experiments using flume models of the sluice gate and trash racks. Plastic elements of different shapes and sizes were introduced to the flume upstream of the water device. The study measured the number of plastic elements captured by the device. The outcomes of the study suggest that for each device, it should be possible to determine the size of elements beyond which they can capture plastic elements in substantial quantities. The findings should be helpful in designing future experiments on the capture of plastic elements by water structures.
Rocznik
Strony
18--25
Opis fizyczny
Bibliogr. 25 poz., rys., tab., wykr.
Twórcy
  • Institute of Environmental Enginering, SGGW, Warsaw University of Life Sciences, Poland
  • Institute of Environmental Enginering, SGGW, Warsaw University of Life Sciences, Poland
  • Institute of Environmental Enginering, SGGW, Warsaw University of Life Sciences, Poland
  • Institute of Environmental Enginering, SGGW, Warsaw University of Life Sciences, Poland
  • Institute of Environmental Enginering, SGGW, Warsaw University of Life Sciences, Poland
autor
  • Institute of Environmental Enginering, SGGW, Warsaw University of Life Sciences, Poland
Bibliografia
  • 1. Alam, M. Z., Anwar, A. H. M. F., Sarker, D. C., Heitz, A. & Rothleitner, C. (2017). Characterising stormwater gross pollutants captured in catch basin inserts. Science of The Total Environment, 586, pp. 76–86. DOI:10.1016/j.scitotenv.2017.01.210
  • 2. Allison, R. A., F H, C. & McMahon, T. A. (1998). Trapping, strategies for gross pollutants Report 98/3, Cooperative Research Centre for Catchment Hydrology.
  • 3. Al-Zawaidah, H., Ravazzolo, D. & Friedrich, H. (2021). Macroplastics in rivers: present knowledge, issues and challenges. Environmental Science: Processes & Impacts, 23(4), pp. 535–552.
  • 4. Armitage, N. & Rooseboom, A. (2000). The removal of urban litter from stormwater conduits and streams: Paper 2 - Model studies of potential trapping structures. Water SA, 26(2), pp. 189–194.
  • 5. Dąbrowska, S. (2021). Zatykanie krat urządzeń wodnych przez elementy plastikowe (The interception of the plastic elements on the trash racks). MSc Thesis. Warsaw University of Life-Science (WULS-SGGW).
  • 6. Eerkes-Medrano, D., Thompson, R. C. & Aldridge, D. C. (2015). Microplastics in freshwater systems: a review of the emerging threats, identification of knowledge gaps and prioritisation of research needs. Water Research, 75, pp. 63–82.
  • 7. Emmerik, T. & Schwarz, A. (2020). Plastic debris in rivers. WIREs Water, 7(1). DOI:10.1002/wat2.1398
  • 8. Enders, K., Lenz, R., Stedmon, C. A. & Nielsen, T. G. (2015). Abundance, size and polymer composition of marine microplastics≥ 10 μm in the Atlantic Ocean and their modelled vertical distribution. Marine Pollution Bulletin, 100(1), pp. 70–81.
  • 9. Gałka, M. (2021). Zatrzymywanie elementów plastikowych przy przepływie wody przez zasuwę (Interception of plastic elements at the sluice gate). MSc Thesis. Warsaw University of Life-Science (WULS-SGGW).
  • 10. González, D., Hanke, G., Tweehuysen, Gijsbert Bellert, B., Holzhauer, M., Palatinus, A., Hohenblum, P. & Lex, O. (2016). RIverine and Marine floating macro litter Monitoring and Modeling of Environmental LoadingEuropean Commission, Joint Research Center. http://mcc.jrc.ec.europa.eu/dev.py?N=simple&O=380&titre_page=RIMMEL&titre_chap=JRC Projects
  • 11. Helinski, O. K., Poor, C. J. & Wolfand, J. M. (2021). Ridding our rivers of plastic: A framework for plastic pollution capture device selection. Marine Pollution Bulletin, 165, 112095. DOI:10.1016/j.marpolbul.2021.112095
  • 12. Hitchcock, J. N. & Mitrovic, S. M. (2019). Microplastic pollution in estuaries across a gradient of human impact. Environmental Pollution, 247, pp. 457–466. DOI:10.1016/j.envpol.2019.01.069
  • 13. Honingh, D., van Emmerik, T., Uijttewaal, W., Kardhana, H., Hoes, O. & van de Giesen, N. (2020). Urban River Water Level Increase Through Plastic Waste Accumulation at a Rack Structure. Frontiers in Earth Science, 8, 28. DOI:/10.3389/feart.2020.00028
  • 14. Kaliszewicz, A., Winczek, M., Karaban, K., Kurzydłowski, D., Górska, M., Koselak, W. & Romanowski, J. (2020). The contamination of inland waters by microplastic fibres under different anthropogenic pressure: Preliminary study in Central Europe (Poland). Waste Management and Research, 0734242X20938448. DOI:10.1177/0734242X20938448
  • 15. Kubrak, E., Kubrak, J., Kiczko, A. & Kubrak, M. (2020). Flow measurements using a sluice gate; Analysis of applicability. Water, 12(3), 819.
  • 16. Kubrak, J., Kubrak, E., Kaca, E., Kiczko, A. & Kubrak, M. (2019). Theoretical and experimental analysis of operating conditions of a circular flap gate for an automatic upstream water level control. Water (Switzerland), 11(12). DOI:10.3390/w11122576
  • 17. Li, J., Liu, H. & Paul Chen, J. (2018). Microplastics in freshwater systems: A review on occurrence, environmental effects, and methods for microplastics detection. Water Research, 137, 362–374. DOI:10.1016/j.watres.2017.12.056
  • 18. Madhani, J. T. & Brown, R. J. (2015). The capture and retention evaluation of a stormwater gross pollutant trap design. Ecological Engineering, 74, pp. 56–59. DOI:10.1016/j.ecoleng.2014.09.074
  • 19. Marais, M., Armitage, N. & Pithey, S. (2001). A study of the litter loadings in urban drainage systems - methodology and objectives. Water Science and Technology, 44(6), pp. 99–108. DOI:10.2166/wst.2001.0350
  • 20. Shim, W. J., Hong, S. H. & Eo, S. (2018). Marine microplastics: Abundance, distribution, and composition. In E. Y. B. T.-M. C. [in] A. E. Zeng (Ed.), Microplastic Contamination in Aquatic Environments: An Emerging Matter of Environmental Urgency (pp. 1–26). Elsevier. DOI:10.1016/B978-0-12-813747-5.00001-1
  • 21. Sosinski, M. (1990). A litter & debris study of the Rahway river. Project No. 90-074A, Township of Cranford.
  • 22. Tibbetts, J., Krause, S., Lynch, I. & Sambrook Smith, G. H. (2018). Abundance, distribution, and drivers of microplastic contamination in urban river environments. Water, 10(11), 1597.
  • 23. van Emmerik, T., Strady, E., Kieu-Le, T. C., Nguyen, L. & Gratiot, N. (2019). Seasonality of riverine macroplastic transport. Scientific Reports, 9(1), pp. 1–9. DOI:10.1038/s41598-019-50096-1
  • 24. Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., SciPy 1.0 Contributors. (2020). SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods, 17, pp. 261–272. DOI:10.1038/s41592-019-0686-2
  • 25. Yin, L., Jiang, C., Wen, X., Du, C., Zhong, W., Feng, Z., Long, Y. & Ma, Y. (2019). Microplastic pollution in surface water of urban lakes in Changsha, China. International Journal of Environmental Research and Public Health, 16(9), 1650. DOI:10.3390/ijerph16091650
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-930468c4-d1b7-463d-882e-c00b49b97d9e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.