PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study of thermal degradation behavior and kinetics of ABS/PC blend

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This work investigated kinetics and thermal degradation of acrylonitrile butadiene styrene and polycarbonate (ABS/PC) blend using thermogravimetric analysis in the range of 25 to 520°C. For thermal degradation of blend, activation energy (Ea) and pre-exponential factor (A) were calculated under various heating rates as 5, 10, 15 and 20°C/min using iso-conversional model-free methods (Kissinger, Flynn-Wall- Ozawa and Friedman). Mass loss of the blend as a function of temperature was plotted as thermogravimetric curve (TG) while derivative values of mass loss were drawn as derivative thermogravimetric (DTG) curve. Using Kissinger method, Ea was 51.4 kJ/mol, while values calculated from FWO and Friedman method were 86–161 and 30–251 kJ/mol respectively. Results showed increasing trend of Ea with higher conversion values indicating different degradation mechanisms at the initial and final stages of the experiment. Thermodynamic parameters such as enthalpy change (ΔH), Gibbs free energy (ΔG) and entropy change (ΔS) were also calculated.
Rocznik
Strony
64--69
Opis fizyczny
Bibliogr. 31 poz., rys.
Twórcy
autor
  • Department of Chemical & Polymer Engineering, University of Engineering & Technology, FSD Campus, 38000, Lahore, Pakistan
  • Department of Chemical Engineering, University of Engineering & Technology, 54890, Lahore, Pakistan
  • Department of Chemical, Polymer & Composite Materials Engineering, University of Engineering & Technology, KSK Campus, 54890, Lahore, Pakistan
  • Department of Chemical, Polymer & Composite Materials Engineering, University of Engineering & Technology, KSK Campus, 54890, Lahore, Pakistan
autor
  • Department of Polymer and Process Engineering, University of Engineering & Technology, 54890, Lahore, Pakistan
Bibliografia
  • 1. Ishak, K.M.K. & Verbeek, C.J. (2016). Mechanical properties of protein-based polymer blends. J. Eng. Sci. 12, 77–86.
  • 2. Suarez, H., Barlow, J.W. & Paul, D.R. (1984). Mechanical properties of ABS/polycarbonate blends. J. Appl. Polym. Sci. 29(11), 3253–3259. DOI: 10.1002/app.1984.070291104.
  • 3. Khan, M.M.K., Liang, R.F., Gupta, R. & Agarwal, S. (2005). Rheological and mechanical properties of ABS/PC blends. Korea-Aust. Rheol. J. 17(1 ), 1–7.
  • 4. Apaydın-Varol, E., Polat, S. & Putun, A.E. (2014). Pyrolysis kinetics and thermal decomposition behavior of polycarbonate – a TGA-FTIR study. Therm. Sci. 18(3), 833–842. DOI: 10.2298/TSCI1403833A.
  • 5. Chanda, M. & Roy, S.K. (2006). Plastics technology handbook (4th ed.). CRC Press Taylor and Francis Publishers.
  • 6. Khun, N.W. & Liu, E. (2013). Thermal, mechanical and tribological properties of polycarbonate/acrylonitrile-butadiene-styrene blends. J. Polym. Eng. 33(6), 535–543. DOI: 10.1515/polyeng-2013-0039.
  • 7. Marinovic-Cincovic, M., Jankovic, B., Jovanovic, V., Samarzija-Jovanovic, S. & Markovic, G. (2013). The kinetic and thermodynamic analyses of non-isothermal degradation process of acrylonitrile-butadiene and ethylene-propylene-diene rubbers. Composites Part B. 45(1), 321–332. DOI: 10.1016/j.compositesb.2012.08.006.
  • 8. Carrasco, F., Perez-Maqueda, L.A., Sanchez-Jimenez, P.E., Perejon, A., Santana, O.O. & Maspoch, M. Ll. (2013). Enhanced general analytical equation for the kinetics of the thermal degradation of poly (lactic acid) driven by random scission. Polym. Test. 32(5), 937–945. DOI: 10.1016/j.polymertesting.2013.04.013.
  • 9. Carrasco, F., Perez-Maqueda, L.A., Santana, O.O. & Maspoch, M. Ll. (2014). Enhanced general analytical equation for the kinetics of the thermal degradation of poly (lactic acid)/montmorillonite nanocomposites driven by random scission. Polym. Degrad. Stab. 101, 52–59. DOI: 10.1016/j.polymdegradstab.2014.01.014.
  • 10. Cuadri, A.A. & Martin-Alfonso, J.E. (2018). Thermal, thermo-oxidative and thermomechanical degradation of PLA: A comparative study based on rheological, chemical and thermal properties. Polym. Degrad. Stab. 150, 37–45. DOI: 10.1016/j.polymdegradstab.2018.02.011.
  • 11. Carrasco, F., Santana, O.O., Cailloux, J., Sanchez-Soto, M. & Maspoch, M. Ll. (2018). Poly (lactic acid) and acrylonitrile−butadiene−styrene blends: Influence of adding ABS−g−MAH compatibilizer on the kinetics of the thermal degradation. Polym. Test. 67, 468–476. DOI:10.1016/j.polymertesting.2018.03.010.
  • 12. Arora, S., Lala, S., Kumar, S., Kumara, M. & Kumar, M. (2011). Comparative degradation kinetic studies of three biopolymers: chitin, chitosan and cellulose. Arch. Appl. Sci. Res. 3(3), 188–201.
  • 13. Slopiecka, K., Bartocci, P. & Fantozzi, F. (2012). Thermogravimetric analysis and kinetic study of poplar wood pyrolysis. Appl. Energy. 97, 491–497. DOI: 10.1016/j.apenergy.2011.12.056.
  • 14. Feng, Y., Wang, B., Wang, F., Zhao, Y., Liu, C., Chen, J. & Shen, C. (2014). Thermal degradation mechanism and kinetics of polycarbonate/silica nanocomposites. Polym. Degrad. Stab. 107, 129–138. DOI: 10.1016/j.polymdegradstab.2014.05.012.
  • 15. Li, X.-G. & Huang, M.-R. (1999). Thermal degradation of bisphenol A polycarbonate by high-resolution thermogravimetry. Polym. Int. 48(5), 387–391. DOI: 10.1002/(SICI)1097-0126(199905)48:5<387::AID-PI150>3.0.CO;2-S.
  • 16. Moussout, H., Hammou, A., Mustapha, A. & Bourakhouadar, M. (2016). Kinetics and mechanism of the thermal degradation of biopolymers chitin and chitosan using thermogravimetric analysis. Polym. Degrad. Stab. 130, 1–9. DOI: 10.1016/j.polymdegradstab.2016.05.016.
  • 17. Gamiz-Gonzalez, M.A., Correia, D.M., Lanceros-Mendez, S., Sencadas, V., Ribelles, J.L. G. & Vidaurre, A. (2017). Kinetic study of thermal degradation of chitosan as a function of deacetylation degree. Carbohydr. Polym. 167, 52–58. DOI: 10.1016/j.carbpol.2017.03.020.
  • 18. Balart, R., Garcia-Sanoguera, D., Quiles-Carrillo, L., Montanes, N., & Torres-Giner, S. (2019). Kinetic analysis of the thermal degradation of recycled acrylonitrile-butadiene-styrene by non-isothermal thermogravimetry. Polymers, 11(2), 281. DOI. 10.3390/polym11020281.
  • 19. Yang, S., Castilleja, J.R., Barrera, E.V. & Lozano, K. (2004). Thermal analysis of an acrylonitrile–butadiene–styrene/SWNT composite. Polym. Degrad. Stab. 83(3), 383–388. DOI: 10.1016/j.polymdegradstab.2003.08.002.
  • 20. Alwani, M.S., Abdul Khalil, H.P.S., Sulaiman, O., Nazrul Islam, M. & Dungani, R. (2013). An approach to using agricultural waste fibers in biocomposites application: thermogravimetric analysis and activation energy study. Bioresources. 9(1), 218–230. DOI: 10.15376/biores.9.1.218-230.
  • 21. Ravari, F., Noori, M. & Ehsani, M. (2019). Thermal stability and degradation kinetic studies of PVA/RGO using the model-fitting and isoconversional (model-free) methods. Fibers Polym. 20, 472–480. DOI: 10.1007/s12221-019-8606-8.
  • 22. Achilias, D.S., Panayotidou, E. & Zuburtikudis, I. (2011). Thermal degradation kinetics and isoconversional analysis of biodegradable poly (3-hydroxybutyrate)/ organomodified montmorillonite nanocomposites. Thermochim. Acta. 514(1), 58–66. DOI: 10.1016/j.tca.2010.12.003.
  • 23. Ceylan, S. & Topçu, Y. (2014). Pyrolysis kinetics of hazelnut husk using thermogravimetric analysis. Bioresour. Technol. 156, 182–188. DOI: 10.1016/j.biortech.2014.01.040.
  • 24. Moriana, R., Vilaplana, F., Karlsson, S. & Ribes, A. (2014). Correlation of chemical, structural and thermal properties of natural fibers for their sustainable exploitation. Carbohydr. Polym. 112, 422–431. DOI: 10.1016/j.carbpol.2014.06.009.
  • 25. Alvarez, V., Rodriguez, E. & Vazquez, A. (2006). Thermal degradation and decomposition of jute/vinylester composites. J. Therm. Anal. Calorim. 85, 383–389. DOI: 10.1007/s10973-005-7102-0.
  • 26. Kim, Y.S., Kim, Y.S. & Kim, S.H. (2010). Investigation of thermodynamic parameters in the thermal decomposition of plastic waste-waste lube oil compounds. Environ. Sci. Technol. 44, 5313–5317. DOI: 10.1021/es101163e.
  • 27. Xu, Y. & Chen, B. (2013). Investigation of thermodynamic parameters in the pyrolysis conversion of biomass and manure to biochars using thermogravimetric analysis. Bioresour. Technol. 146, 485–493. DOI: 10.1016/j.biortech.2013.07.086.
  • 28. Quan, C., Ningbo, G. & Song, Q. (2016). Pyrolysis of biomass components in a TGA and a fixed-bed reactor: thermochemical behaviors, kinetics, and product characterization. J. Anal. Appl. Pyrolysis. 121, 84–92. DOI: 10.1016/j.jaap.2016.07.005.
  • 29. Othman, M.B.H., Akil, H.M., Rasib, S.Z.M., Khan, A. & Ahmad, Z. (2015). Thermal properties and kinetic investigation of chitosan-PMAA based dual-responsive hydrogels. Ind. Crops Prod. 66, 178–187. DOI: 10.1016/j.indcrop.2014.12.057.
  • 30. Polli, H., Pontes, L.A.M., Araujo, A.S., Barros, J.M.F. & Fernandes Jr., V.J. (2009). Degradation behavior and kinetic study of ABS polymer. J. Therm. Anal. Calorim. 95, 131–134. DOI: 10.1007/s10973-006-7781-1.
  • 31. Maia, A.A.D. & de Morais, L.C. (2016). Kinetic parameters of red pepper waste as biomass to solid biofuel. Bioresour. Technol. 204, 157–163. DOI: 10.1016/j.biortech.2015.12.055.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-92fbc8af-99e8-40f5-ba6f-9ba05c900037
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.