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Study of thermal degradation behavior and kinetics of ABS/PC blend
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This work investigated kinetics and thermal degradation of acrylonitrile butadiene styrene and polycarbonate 
(ABS/PC) blend using thermogravimetric analysis in the range of 25 to 520oC. For thermal degradation of blend, 
activation energy (Ea) and pre-exponential factor (A) were calculated under various heating rates as 5, 10, 15 and 
20oC/min using iso-conversional model-free methods (Kissinger, Flynn-Wall- Ozawa and Friedman). Mass loss of 
the blend as a function of temperature was plotted as thermogravimetric curve (TG) while derivative values of 
mass loss were drawn as derivative thermogravimetric (DTG) curve. Using Kissinger method, Ea was 51.4 kJ/mol, 
while values calculated from FWO and Friedman method were 86–161 and 30–251 kJ/mol respectively. Results 
showed increasing trend of Ea with higher conversion values indicating different degradation mechanisms at the 
initial and fi nal stages of the experiment. Thermodynamic parameters such as enthalpy change (ΔH), Gibbs free 
energy (ΔG) and entropy change (ΔS) were also calculated.

Keywords: ABS/PC blend, thermal degradation, iso-conversional analysis, activation energy, thermody-
namic parameters.

INTRODUCTION

                                Polymer blending is an effi cient way of developing new 
materials with a desirable balance of properties. Started 
about six decades ago, polymer blending now occupies 
a considerable share of the commercial market. It is 
an economical technique for producing new materials 
using already existing polymers in a cost-effective way. 
The physical properties of the blends can be adjusted 
according to end application requirements. Careful 
selection of ingredients, processing method and control 
of processing conditions are important to ensure better 
performance of blend1. 

Blends of polycarbonate (PC) with acrylonitrile buta-
diene styrene (ABS) have been available commercially 
from the past few decades. As blending improves the 
characteristics of a neat polymer, one can expect fair 
boost in the performance of ABS with the addition 
of polycarbonate. Not only PC processing is improved 
by the addition of ABS, enhancement in toughness, 
heat resistance and environmental stress cracking in 
a cost-effective way have also been reported2, 3. ABS is 
a heterogeneous terpolymer that consists of a dispersed 
rubbery phase made up of polybutadiene rubber grafted 
with styrene-acrylonitrile and it is then dispersed in 
continuous phase of more styrene-acrylonitrile. PC is 
a single-phase, homogeneous polymer. Blending of PC 
and ABS changes the ratio of plastic and rubber phase 
components. The structural morphology of the system is 
altered by blending and it yields different rheological and 
mechanical properties3. PC fi nds extensive applications in 
areas such as electronics, 3D printing construction mate-
rial, medical equipment and automobile. It is a polymer 
that possesses good mechanical characteristics i.e. high 
impact strength and modulus, thermal stability at high 
temperatures and high electrical resistance but diffi cult 
processability4. Amongst commercial polymers, ABS is 
a thermoplastic characterized by poor fl ame and chemical 

resistance. It is commercially available since the early 
1950s. As it is made up of three monomers, all three 
impart their characteristics in the fi nal polymer form. 
Acrylonitrile contributes chemical and heat resistance, 
and high strength; butadiene contributes with improved 
toughness, impact strength; styrene contributes rigidity 
and processability. ABS is considered to be hard, tough 
and rigid and its major uses include pipes, fi ttings, tele-
phones, automotive parts and appliances5, 6.

The increasing use of polymer blends requires the 
need to evaluate the thermal stability of these materials. 
Thermal degradation of polymers usually follows more 
than one mechanism. Kinetics determination becomes 
complicated due to the presence of concurrent chemi-
cal reactions along with evaporation. The kinetic study 
is important to determine as it provides information on 
useful treatments to avoid thermal degradation and to 
estimate the service life of materials7. A large number 
of publications have been presented to understand the 
thermal degradation phenomena and its kinetics8–11. Py-
rolysis of polymers involves complex reactions. To identify 
and understand the pyrolysis process, TGA is useful 
in evaluating decomposition and its reaction kinetics. 
Research has been carried out worldwide to use TGA 
for thermal decomposition behavior analysis of various 
polymer blends. Sanjiv Arora et al.12 did a comparative 
kinetic study of some biopolymers using TGA/DTA at 
multiple heating rates and proposed reaction mechanism 
using model-free methods (FWO, Kissinger, Friedman 
and modifi ed Coats-Redfern) to calculate activation 
energy. These methods are being used increasingly for 
the kinetic parameters determination of polymers. Esin 
Apaydin-Varol et al.4 used TGA-FTIR study to determine 
pyrolysis kinetics and thermal decomposition behavior 
of polycarbonates. Katarzyna Slopiecka et al.13 described 
kinetic studies of poplar wood using model-free methods. 
Yuezhan Feng et al.14 applied iso-conversional methods 
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on TGA data to understand the thermal decomposition 
mechanism and kinetics of polycarbonate/silica nanocom-
posites. Thermal degradation of bisphenol A polycar-
bonate was evaluated by Xin-Gui Li et al.15 using high-
resolution thermogravimetry. They used Freeman-Carroll, 
Friedman and Chang methods to determine kinetic 
parameters. Hamou Moussout et al.16 investigated the 
kinetics and degradation mechanisms of biocomposites 
using FTIR and TGA. The activation energy (Ea) was 
calculated using Flynn-Wall-Ozawa (FWO), Friedman 
and Kissinger-Akahira-Sunose (KAS) methods. These 
model-free methods were also applied on chitosan by 
M. A. Gamiz-Gonzale et al. to understand kinetic and 
degradation mechanisms under various heating rates17.

As blending improves the characteristics of ABS by the 
addition of PC, the study of their thermal behavior and 
kinetics determination is very important. Rafael Balart 
et al.18 used non-isothermal thermogravimetric analysis 
for the kinetic study of recycled ABS using model-free 
methods while Shuying Yang et al.19 used an isothermal 
approach to fi nd activation energy values for ABS. Esin 
Apaydin-Varol et al.4 determined pyrolysis kinetics and 
decomposition behavior of polycarbonate using FWO 
and Friedman methods. Kinetics of ABS and PC have 
been determined individually using model-free methods 
in the past. To better understand the characteristics of 
blends, their thermal and kinetic analysis is very impor-
tant so this work focused to determine the activation 
energy values and thermodynamic parameters of the 
blend of ABS and PC, present in equal amounts, using 
thermogravimetric analysis.

This work aimed to investigate the kinetics of thermal 
decomposition of ABS/PC polymer blend at four differ-
ent heating rates. Thermogravimetric analysis was used 
to record the changes in mass with respect to time and 
temperature. It is a common technique used for the 
kinetic analysis of the heating process. Kinetic data from 
TGA can be analyzed using model-fi tting or model-free 
methods. In the model-fi tting method, a statistically best-
fi t model is obtained and kinetic parameters are calcu-
lated. Model-free methods make no assumption about 
the reaction order or reaction function. Kinetic curves 
were plotted and analysis performed. This work utilized 
model-free methods to investigate kinetic parameters. 
Various computational methods are available, amongst 
which iso-conversional and multi-heating methods (Kiss-
inger, Flynn-Wall-Ozawa, and Friedman) are quite simple 
and widely used to estimate the kinetics of polymer 
blends19, 20. In the present work, above mentioned three 
model-free non-isothermal methods were used to estimate 
the activation energy. Thermodynamic parameters such 
as enthalpy (ΔH), Gibbs free energy (ΔG) and entropy 
(ΔS) have been calculated using FWO method.

EXPERIMENTAL

Materials and sample preparation
ABS/PC sample used for TGA studies was commercial 

grade blend (50/50 wt. %) obtained from Lucky Plastics, 
Pakistan. Blend preparation was done using an internal 
mixer and then the desired sheet was molded, using equal 
weights of ABS and PC at about 280oC.

Thermogravimetric analysis
No pretreatments were done and the sample was used 

directly for the analysis. Thermogravimetric analysis 
was performed using simultaneous TGA/DSC (model, 
TA instruments, USA). The results were analyzed by 
a Qtech SDT Q600 analyzer. For each test, about 10 
mg sample was taken and heated from 25oC to 520oC 
at different heating rates of 5, 10, 15 and 20oC/min. 
Experiments were performed in nitrogen environment 
where its fl ow was maintained at 10 ml/min. For each 
heating rate, experiments were repeated twice, to verify 
the reproducibility of kinetic curves. 

Kinetic analysis: Theoretical approach
Iso-conversional methods do not need reaction mecha-

nism information to determine kinetic parameters. In 
these methods, reaction rate depends on temperature 
and time, at constant value of α, degree of conversion. 
Kinetics of polymer thermal degradation is described by 
a single step equation as22, 23

 (1)

where t is time, T is temperature, and α is degree of 
conversion, determined from TGA, calculated as α = 
(mo-mt)/(mo-mf), with mo, mt and mf representing initial, 
instantaneous and fi nal mass of sample, β is heating rate 
dT/dt and k(T) is the rate constant, which is expressed 
using Arrhenius equation

 (2)

In this equation, A is pre-exponent factor, Ea is the 
activation energy, R is the universal gas constant and T 
is absolute temperature

Substituting the value of k(T), equation (1) will be 

 (3)

Three iso-conversional model-free methods, Kissinger, 
Flynn-Wall-Ozawa and Friedman have been used to fi nd 
the kinetics of the degradation process. Expressions 
and plots of each method have been summarized in 
Table 124, 25. Model-free methods allow the determi-
nation of activation energy without using any reaction 
mechanism assumptions.

Table 1. Iso-conversional model-free methods used to determine 
activation energy

Kissinger method uses maximum decomposition tem-
perature (Tp) at which reaction rate is maximum and the 
highest conversion is obtained. The slope of the curve 
ln(β/Tp)2 vs 1/Tp gives the value of activation energy. 
FWO method is the most commonly used technique for 
kinetics calculation. In this model, lnβ vs 1/T curves are 
plotted at different heating rates for conversion degree 
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change in thermal decomposition pattern by increasing 
β (except at 5oC/min), but TG and DTG curves have 
been shifted towards higher temperatures. The maximum 
peak temperature is moved from 393 to 481oC, when β 
increases from 5 to 20oC/min. Therefore, it can be said 
that higher heating rate caused change in maximum 
peak temperature. As shown in Figure 2, curves show 
shifting to higher temperatures as β increases from 5 to 
20oC/min. So there is delay in the thermal degradation 
of the sample, due to heat transfer lag since the sample 
attains decomposition temperature in a shorter time 
when heating rate is increased23, 28. At 20oC/min, there 
is a broader temperature range between onset and offset 
temperature while this range narrows down as heating 
rate is reduced to 5oC/min. This variation exists due to 
shorter time to attain decomposition temperature at 
higher heating rates.

values of α = 0.1 – 0.9. The slope of the curves gives 
–0.453Ea/R value4. Friedman method also used plot 
of ln (dα/dt) vs 1/T at progressing conversion degrees 
α = 0.1 to 0.9 for β values of 5, 10, 15 and 20oC/min. 
From the slopes of curves, activation energies were 
calculated. This work used heating rate of 10oC/min to 
calculate pre-exponential factor (A) and thermodynamic 
parameters (such as enthalpy ΔH, Gibbs free energy ΔG 
and entropy ΔS) using FWO method. All these can be 
expressed as following equations26, 27

 (7)

 (8)

 (9)

 (10)

where KB is Boltzmann constant with value of 1.381 × 
10–23 (J/K) and h is Plank constant 6.626 × 10–34 (Js).

RESULTS AND DISCUSSION

Thermogravimetric analysis of ABS/PC
TG and DTG curves of the blend at four different 

heating rates have been shown in Figures 1 & 2. From 
room temperature to 230oC, there is no signifi cant change 
in the original sample mass. Upon heating above 230oC, 
thermal degradation starts and it occurs in two ranges, 
from 230 to 370oC, and from 380 to 490oC. From 5oC/min 
to 20oC/min heating rate, mass loss has been measured to 
be approximately 12%, 10%, 4% and 3% respectively at 
temperature 370oC. This loss represents moisture removal 
from the sample. In general, the sample shows a major 
mass loss from approximately 370 to 490oC. As shown 
in the fi gure, the blend experiences approximately total 
weight loss in the given temperature range at all heating 
rates. For β = 20oC/min, major mass loss starts at around 
390oC while it is 370oC for β = 5oC/min. At 5oC/min, 
suffi cient time is available for the moisture removal, so 
mass loss is higher (12%) while at 20oC/min, moisture 
loss is only 3% until major degradation starts at 390oC. 
So thermal stability is more at higher heating rates as 
the onset temperature of degradation is higher in case 
of 20oC/min heating rate.

From Fig. 2, it can be seen that for β = 5oC/min, highest 
weight loss (7.5%) occurs at 393oC while for 20oC/min, 
weight loss is 40.8% at 481oC. There is no signifi cant 

Figure 1. Thermogravimetric curves of ABS/PC at four different 
heating rates

Figure 2. DTG curves of ABS/PC at four different heating 
rates

Figure 3. Relationship between β and maximum peak tempe-
rature Tp

Temperatures for maximum reaction rate are 393, 446, 
470 and 481oC for 5, 10, 15 and 20oC/min respectively. 
Figure 3 represents the relationship between heating 
rate and maximum thermal degradation temperature. 
It is evident from fi gure that linear relationship exists 
between degradation temperature and heating rate.

Activation energy
Kinetic studies have been done on heating rates 

(5, 10, 15 and 20oC/min) according to three methods 
(Kissinger, FWO and Friedman), for thermal degrada-
tion process ranging from room temperature to 520oC. 
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of α values (0.3 to 0.8). Figure 6 represents the plot of 
ln(dα/dt) against 1000/T, where slopes of the fi tted lines 
give activation energy values.

Figure 4 represents the plot of Kissinger method. To 
estimate the activation energy through Kissinger method, 
peak temperatures are determined from DTG curves 
(Fig. 2). Decomposition activation energy has been 
found from slope of the straight line plot of ln(β/Tp

2) 
against 1/Tp, as evident from Figure 4. Activation energy 
is calculated to be 51.44 kJ/mol with R2 value of 0.97 
from slope of the line.

Table 2. Kinetic and thermodynamic parameters of ABS/PC blend at the maximum differential conversion under the heating rate 
of 10oC/min

Figure 4. ln(β/Tp
2) vs 1000/Tp plot for ABS/PC at four different 

heating rates

Figure 5. Plot of lnβ vs 1000/T for ABS/PC blend at various 
conversion α values

Figure 6. Linear plots of ln(dα/dt) against 1000/T in Friedman 
method

The conversion values (α) from 0.1 to 0.9 have been 
used to determine the activation energy by using FWO 
method. In this method, the temperature corresponding to 
specifi c α value has been measured from TG, at different 
heating rates and Ea values have been calculated from 
the curves of lnβ vs 1000/T (Fig. 5). For each value of 
α, slope corresponds to Ea/R. Since fi tted lines appeared 
to be almost parallel to each other, there is possibility 
of single reaction mechanism. Activation energy values 
at different conversion (α) values have been presented 
in Table 2. For conversions, less than 50%, activation 
energy value lied between 80 to 90 kJ/mol. Highest Ea 
value 161.5 kJ/mol, occurred at 90% conversion of the 
blend. Ea values are believed to play a key part in the 
degradation kinetics of the blend at the initial and fi nal 
stages of thermal decomposition. Low activation energy 
values are for the initial stages where weak bonds exist. 
Later its value rises when complex chemical bonding 
involves8, 29.

Since calculated activation energy is different at all 
α values, there must be complex multistep mechanism 
involved in thermal degradation, with Ea dependent 
upon α. Activation energies of ABS/PC sample have also 
been calculated using Friedman method over a range 

Most of the lines in the plot are parallel to each other 
except some lines (such as α = 0.3 and 0.4) which are 
not parallel. It indicates the complexity of the decomposi-
tion mechanism. Values at low conversion (Ea = 55.7 kJ/
mol at α = 0.3) have been different than values at high 
conversion (Ea = 241.7 kJ/mol at α = 0.8), indicating 
the different degradation mechanisms at initial and fi nal 
stages of the process. Values calculated by Friedman 
method have been mostly higher than by FWO method 
and the same trend is followed in the case of ABS/PC 
blend8. Variation of Ea (calculated by FWO and Fried-
man methods) with α is shown in Figure 7.

Ea values of different ABS samples have been reported 
to be above 200 kJ/mol by H. Polli et al. while the 
ABS/PC blend gives average values to be 105 and 145 
kJ/mol by FWO and Friedman method respectively30. 
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is dependent upon conversion, implying the complex 
nature of thermal degradation of ABS/PC blend. Ther-
modynamic parameters were also calculated. Enthalpy 
values increased with an increase in temperature and 
conversion, which showed more thermal energy require-
ment at higher temperature to break bonds. ΔS values 
varied from –331.26 to 325.93 J/mol indicated decreased 
disorder of products. Work is in progress to study nano 
surface mechanical characteristics of ABS/PC blends 
having different compositions of ABS and PC.
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