PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Materiały kompozytowe umacniane preformami wytworzonymi w procesie wysokotemperaturowej syntezy w polu mikrofalowym

Autorzy
Identyfikatory
Warianty tytułu
EN
Composite materials reinforced with preforms manufactured by high temperature synthesis in microwave field
Języki publikacji
PL
Abstrakty
PL
Przedstawiono problematykę wytwarzania materiałów kompozytowych metodą infiltracji ciśnieniowej obejmującą przygotowanie porowatych preform, nagrzewanie mikrofalowe, prasowanie ze stanu ciekłego oraz badania podstawowych właściwości mechanicznych. Zaadaptowano samorozprzestrzeniającą się syntezę wysokotemperaturową SHS do wytwarzania preform z faz międzymetalicznych typu Al-Ni, Al-Cr, Al-Ti, związków zawierających tlenowęgliki Ti-O-C, węgliki TiC oraz fazy Ti-C-Al. Przeprowadzono badania możliwości wykorzystania nagrzewania mikrofalowego do inicjowania i wspomagania syntezy. Zaprojektowano i zbudowano prototypowy rektor mikrofalowy umożliwiający intensywne nagrzewanie rozdrobnionych materiałów meta-liczno-ceramicznych wraz z precyzyjnym pomiarem temperatury zachodzących zjawisk fizykochemicznych. Opracowano parametry syntezy objętościowej oraz syntezy w strumieniu reaktywnego gazu materiałów porowatych, analizując sposób kształtowania struktury i zachodzących przemian fazowych. Określono wpływ ziarnistości proszków, składu chemicznego mieszaniny wyjściowej oraz mocy promieniowania mikrofalowego na przebieg syntezy i mikrostrukturę produktów. Przedstawiono metody rozwinięcia porowatości otwartej dla wybranych układów. Przeprowadzono analizę parametrów prasowania ze stanu ciekłego (ang. squeeze casting), dobierając je do infiltracji preform o małej porowatości i wytrzymałości. Prowadzono badana mikroskopowe połączone z identyfikacją fazową preform oraz materiałów kompozytowych. Analizowano stopień jednorodności struktury, rodzaj porowatości oraz jakość połączenia umocnienia z osnową. Opracowano parametry obróbki cieplnej mającej na celu ujednorodnienie struktury, a także przekształcenie nasyconych faz umacniających. Materiały kompozytowe umocnione wyselekcjonowanymi preformami poddano badaniom twardości, wytrzymałości na rozciągane, rozszerzalności cieplnej i odporności na zużycie. Przede wszystkim zaobserwowano istotny wzrost twardości, poprawę stabilności wymiarowej oraz odporności na ścieranie w warunkach tarcia suchego.
EN
Researches of pressure infiltrated composite materials included preparation of porous preform, mi-crowave heating, squeeze casting and determination of fundamental mechanical properties was presented. Self-propagation high temperature synthesis SHS was adopted for production of preforms from Al-Ni, Al-Cr, Al-Ti intermetallic phases, compounds containing Ti-O-C oxycarbides, TiC carbides and Ti-C-Al phases. The possibility of using microwave heating to initiate and support synthesis was studied. Designed and built a prototype microwave rector allows intense heating of powdered metallic-ceramic materials with precise temperature measurement of proceeded physical and chemical phenomena. Parameters of volume synthesis and synthesis in reactive gas stream for porous materials were elaborated with simultaneous analysis of structure development and phase transitions. Moreover influence of particle size powders, the chemical composition of the starting mixture and the power of microwave radiation on the course of the synthesis and microstructure of the products were determined. For selected systems to develop open porosity appropriate method was applied. Next squeeze casting parameters were established to infiltrate preform characterised low porosity and strength. In this area investigation related to the micro-structure homogeneity, porosity and reinforcement-matrix interface analysis. Elaborated heat treatment parameters allows improving microstructure and transforming infiltrated reinforcing phases. Composite materials reinforced with selected preforms were subjected to hardness, tensile strength, thermal expansion and wear examinations. First of all significant increase of hardness, where resistance and thermal stability were observed.
Twórcy
autor
  • Instytut Technologii Maszyn i Automatyzacji Politechniki Wrocławskiej, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław
Bibliografia
  • [1] AGHAJANIN M.K., HANNON G.E., SMITH R.G., BIEL J.P., BURKE J.T., KENNEDY C.R., ROCAZELLA M.A., BECKER K.J., HENDERSON T.J., Method of forming metal matrix composite bodies by a spontaneous infiltration process, and products produced therefrom, US Patent No. 5, 249, 621, 1993.
  • [2] AIBIN MA, TORU IMURA, KAZUHIRO KUZUYA, YOSHINORI NISHIDA, Fabrication of gradient distribution alumina short fibre reinforced aluminium alloy, Journal of Materials Science, Vol. 34, 1999, 3813-3819.
  • [3] ALTINKOK NECAT, DEMIR ADEM, OZSERT IBRAHIM, Processing of Al203/SiC ceramic cake preforms and their liquid Al metal infiltration, Composites Part A: Applied Science and Manufacturing, Vol. 34, No. 7, 2003, 577-582.
  • [4] AMICO S., LEKAKOU C, An experimental study of the permeability and capillary pressure in resin-transfer moulding, Composites Science and Technology, Vol. 61, No. 13, 2001, 1945-1959.
  • [5] APTE P.S., CORBIN S.F.J., Method of manufacturing inter metallic/ceramic/metal composites, US Patent No. 5, 902, 429, 1999.
  • [6] ARAVINDAN S., KRISHNAMURTHY R., Joining of ceramic composites by microwave heating, Materials Letters, Vol 38, No. 4, 1999, 245-249.
  • [7] ARAYA WOREDE TESFAY, NATH S. K., RAY S., Effect of transfer layer on dry sliding wear behaviour of cast Al-based composites synthesized by addition of Ti02 and MoO3, Wear, Vol. 266, No. 11-12, 2009, 1082-1090.
  • [8] ARVIEU C, MANAUD J.P., QUENISSET J.M., Interaction between titanium and carbon at moderate temperatures, Journal of Alloys and Compounds, Vol. 368, No. 1-2, 2004, 116-122.
  • [9] AUDIER M., DURAND-CHARRE M., LACLAU E., KLEIN H., Phase equilibria in the Al-Crsystem, Journal of Alloys and Compounds, Vol. 220, 1995, 225-230.
  • [10] BERGER L. M., GRUNER W., LANGHOLF E., STOLLE S., On the mechanism of carbothermal reduction processes ofTi02 and Zr02, International Journal of Refractory Metals and Hard Materials, Vol. 17, No. 1-3, 1999, 235-243.
  • [11] BERTOLINO N., MONAGHEDDU M., TACCA A., GIULIANI P., ZANOTTI C, ANSELMI U.TAMBURINI, Ignition mechanism in combustion synthesis of Ti-Al and Ti-Ni systems, Interme tallies, Vol. 11, No. 1, 2003, 41-19.
  • [12] BISWAS A., ROY S.K., GURUMURTHY K.R., PRABHU N., BANERJE S., A study of self-propagating high-temperature synthesis of NiAl in thermal explosion mode, Acta Materialia, Vol. 50, 2002, 757-773.
  • [13] BISWAS A., ROY S.K., Comparison between the microstructural evolutions of two modes of SHS of NiAl: key to a common reaction mechanism, Acta Materialia, Vol. 52, 2004, 257-270.
  • [14] BUCHELNIKOVA V.D., LOUZGUINE-LUZGIN A.P. ANZULEVICHA I.V., BYCHKOV N., YOSHIKAWA M., SATO A., Modeling of microwave heating of metallic powders, Physica B: Condensed Matter, Vol. 403, No. 21-22, 2008, 4053-4058.
  • [15] CALHOUN R. B., MORTENSEN A., Infiltration of fibrous preforms by a pure metal, Metallurgical and Materials Transactions A, Vol. 23, No. 8, 1992, 2291-2299.
  • [16] CARDINAL S., R'MILI M., MERLE P., Improvement of high pressure infiltration behaviour of alumina platelet preforms: manufacture and characterization of hybrid preforms, Composites Part A: Applied Science and Manufacturing, Vol. 29, No. 11, 1998, 1433-441.
  • [17] CHEN T., CHANG H.W., LEI M.K., Prediction of intermetallics formation during metal ion implantation into Al at elevated temperature, Nuclear Inst, and Methods in Physics Research B, Vol. 240, No. 3, 2005, 653-660.
  • [18] CHENG JIPING, AGRAWAL DINESH, ROY RUSTUM, JAYAN P.S., Continuous microwave sintering of alumina abrasive grits, Journal of Materials Processing Technology, Vol. 108, No. 1,2000,26-29.
  • [19] CHOLEWA M., Wpływ morfologii zbrojenia na kinetyką krzepnięcia mikroobszarów kompozytowych , Archiwum Odlewnictwa, Vol. 5, No. 15 2005, 60-69
  • [20] CHOLEWA M., Przykładowe założenia w badaniu krzepnięcia odlewanych kompozytów dyspersyjnych, Kompozyty, Vol. 6 2006, 39-44
  • [21] CHOLEWA M., SZUTER t., DZIUBA M., Basic propertiec of 3D cast skeleton structures, Archives of Material Science and Engineering, Vol. 52, No2,2011,101-111
  • [22] CHRIFI-ALAOUI F.Z., NASSIK M., MAHDOUK K., GACHON J.C., Enthalpies of formation of the Al-ni intermetallic compounds, Journal of Alloys and Compounds, Vol. 364,2004, 121-126
  • [23] COCHEPIN BENOIT, HEIAN ELLEN, KARNATAK NIKHIL, VREL DOMINIQUE, DUBOIS SYLVAIN, TiC
  • [24] CREUIS J., BILLARD A., SANCHETTE F., Corrosion behavior of amorphous Al-Cr and Al-Cr-(N) coatings deposited by DC magnetron sputtering on mild steel substrate. Thin Solid Films, Vol. 466,2004, 1-9
  • [25] CURFS C., TURRILLAS X., VAUGHAN G., TERRY A.E. KVIVK A. RODRIGUEZ, Al-Ni interme tallics obtained by SHS: A time-resolved X-ray diffraction, Intermetallics, Vol. 15,2007,1163-1171
  • [26] DEBDAS ROY, BIKRAMJIT BASU, AMITAVA BASU MALLICK, Tribological properties of Ti-aluminide reinforced Al-based in situ meatl matrix composite, Intermetallics, Vol. 13., No. 7,2005, 733-740.
  • [27] DEPOIS J.F., MORTENSES A., Permeability of open-pore microcellular materials, Acta Materialia, Vol. 53, No 5, 2005, 1381-1388
  • [28] DICKERSON M.B., WURM P.J., SCHORR J.R., HOFFMAN W.P., WAPNER P.G., SANDHAGE K.H., Near net-shape, ultra-high melting, recession-resistant ZrC/W-based rocket nozzle liners via the displacive compensation of porosity (DCP) method, Journal of Materials Science, Vol. 39, No. 19, 2004, 6005-6015.
  • [29] DILIP J.S., REDDY B.S.B., SIDDHARTH DAS, KARABI DAS, In-situ Al-based bulk nanocom-posites by solid-state aluminothermic reaction in Al-Ti-0 system, Journal of Alloys and Compounds, Vol. 475, No. 1-2, 2009, 178-183.
  • [30] DJANARTHANY S., VIALA J.C., BOUIX J., An overview of monolithic titanium aluminides based on Ti3Al and TiAl, Materials Chemistry and Physics, Vol. 72, No. 3, 2001, 301-319.
  • [31] DOBRZAŃSKI L.A., Materiały inżynierskie i projektowanie materiałowe. Podstawy nauki o materiałach i metaloznawstwo, WNT, wydanie II zmienione i uzupełnione, Warszawa, 2006.
  • [32] DUANGDUEN ATONG, DAVID E. CLARK, Ignition behavior and characteristics of microwave-combustion synthesized Al2O3-TiC powders, Ceramics International, Vol. 30, No. 7,2004,1909-1912.
  • [33] DUNMEAD S.D., MUNIR Z.A., BIRCH HOLT J., Gas-solid reactions under a self-propagating combustion mode, Solid State Ionics, Vol. 32-33, 1989, 474-481.
  • [34] EFIMOV O.YU., ZARIPOV N.G., BLOSHENKO V.N., BOKIJ V.A., KASHTANOVA A.A., BELINSKAYA U.L., The effect of residual pressure on the structure and the strength properties of porous titanium carbide obtained by the SPHTS method in vacuum, Fizika Goreniya i Vzryva, Vol. 28, 1992, 50-53
  • [35] ESLAMLOO-GRAMI, MARYAM MUNIR, ZUHAIR A., Effect of porosity on the combustion
  • synthesis of titanium nitride, Journal of the American Ceramic Society, Vol. 73, 1990, 1235-1239.
  • [36] EVGENY SHAFIROVICHA, SOON KAY TEOHA, ARVIND VARMA, Combustion of levitated titanium particles in air, Combustion and Flame, Vol. 152, No. 1-2, 2008, 262-271.
  • [37] FANA Y., YANG H., LI M., ZOU G., Evaluation of the microwave absorption property of flake graphite, Materials Chemistry and Physics, Vol. 115, 2009, 696-698.
  • [38] FARAOUN H., AOURAG H., ESLING C, SEICHEPINE J.L., CODDET C, Elastic properties of binary NiAl, NiCr and AlCr and ternary Ni2AlCr alloys from molecular dynamic and Abinitio simulation, Computational Materials Science, Vol. 33, 2005, 184-191.
  • [39] FENG-SHI YIN, LI ZHOU, ZHI-FENG XU, BING XUE, XUE-BO JIANG, Synthesis of nano-crystalline titanium carbonitride during milling of titanium and carbon in nitrogen atmosphere, Journal of Alloys and Compounds, Vol. 470, No. 1-2, 2009, 369-374.
  • [40] FOROUZANMEHR N., KARIMZADEH F., ENAYATI M.H., Synthesis and characterization of TiAl/alfa-Al203 nanocomposite by mechanical alloying, Journal of Alloys and Compounds, Vol. 478, No. 1-2, 2009, 257-259.
  • [41] FRAŚ E., WIERZBIŃSKI S., JANAS A., LOPEZ H.F., SHSB processing and properties of Al/TiC "in-situ" composites, Archives of Metallurgy, Vol. 46, 2001, 407-423.
  • [42] FRAŚ E., JANAS A., KURTYKA P., WIERZBIŃSKI S., Structure and properties of cast Ni3Al/TiC and NijAl/TiB2 composites part II. Investigation of mechanical and tribological properties and of corrosion resistance of composites based on intermetallic phase Ni3Al reinforced with particles ofTiC and TiB2, Archives of Metallurgy and Materials Vol. 49, No. 1, 2004, 113-141.
  • [43] FU Z.Y., WANG H., WANG W.M., YUAN R.Z., Composites fabricated by self-propagating high-temperature synthesis, Journal of Materials Processing Technology, Vol. 137, 2003, 30-34.
  • [44] GARB ALA K., PATE JUK A., Defects of Al-Ni joints caused by Kirkendall-Frenkel effect, Archives of Foundry Engineering, Vol. 10, No. 1, 2010, 455-458.
  • [45] GHEORGHE I., RACK H. J., Reactive infiltration of 25 vol pet Ti02/Al composites, Metallurgical and Materials Transactions A, Vol. 33, No. 7, 2002, 2155-2162.
  • [46] GOLKAR G., ZEBARJAD S.M., VAHDATIKHAKI J., Optimizing the ignition behavior of microwave-combustion synthesized Al203/TiC composite using Taguchi robust design method, Journal of Alloys and Compounds, Vol. 487, No. 1-2, 2009, 751-757.
  • [47] GÓRNY Z., SOBCZAK J.J., Nowoczesne tworzywa odlewnicze na bazie metali nieżelaznych, Wydawnictwo Instytutu Odlewnictwa, Kraków, 2005.
  • [48] GRUSZKO B., PRZEPIORZYNSKI B., KOWALSKA-STRZECIWILK E., SUROWIEC M, New phase in the high-Al region of Al-Cr, Journal of Alloys and Compounds, Vol. 420, 2006, L1-L4.
  • [49] GUOJIAN CAO, LIN GENG, ZHENZHU ZHENG, MASAAKI NAKA, The oxidation of nano-crystalline M3AI fabricated by mechanical alloying and spark plasma sintering, Intermetallics, Vol. 15, No. 12, 2007, 1672-1677.
  • [50] GUPTA M., WONG W.L.E., Enhancing overall mechanical performance of metallic materials using two-directional microwave assisted rapid sintering, Scripta Materialia, Vol. 52, 2005,479-483.
  • [51] HANDWERKER, C.A., FOECKE T.J., WALLACE J.S., JIGGETS R.D., KATTNER U.R., Formation of alumina-chromia-chromium composites by a partial reduction reaction, Materials Science and Engineering: A, Vol. 195, 1995, 89-100.
  • [52] HEE Y. KIM, DONG S. CHUNG, SOON H. HONG, Reaction synthesis and microstructures of NiAl/Ni micro-laminated composites, Materials Science and Engineering A, Vol. 396, 2005, 376-384.
  • [53] HORVITZ D., GOTMAN I., GUTMANAS E. Y., CLAUSSEN N., In situ processing of dense Alfiy-Ti aluminide interpenetrating phase composites, Journal of the European Ceramic Society, Vol. 22, No. 6, 2002, 947-954.
  • [54] GOLESTANIAN H., Preform permeability variation with porosity of fiberglass and carbon mats, Journal of Materials Science, Vol. 43, No. 20, 2008, 6676-6681.
  • [55] HYUNJUNG KIM, YOSEOP HAN, JAIKOO PARK, Evaluation of permeable pore sizes of macroporous materials using a modified gas permeation method, Materials Characterization, Vol. 60, 2009, 14-20.
  • [56] IGNATENKO M., TANAKA M., Effective permittivity and permeability of coated metal powders at microwave frequency, Physica B: Condensed Matter, Vol. 405, No. 1, 2010, 352-358.
  • [57] IKEGAMI A., KIMURA Y., SUZUKI H., SATO T., TANIGAKI T., KIDO O., KURUMADA M., SAITO Y., KAITO C, Growth process of TiC clusters from Ti nanoparticles with evaporated carbon layer, Surface Science, Vol. 540, No. 2-3, 2003, 395-400.
  • [58] JAWORSKA L., STOBIERSKI L., TWARDOWSKA A., KRÓLICKA D., Preparation of materials based on Ti-Si-C system using high temperature-high pressure method, Journal of Materials Processing Technology, Vol. 162-163, 2005, 184-189
  • [59] JIAN-GUO LUO, VIOLA L. ACOFF, Using cold roll bonding and annealing to process Ti/Al multi-layered composites from elemental foils, Materials Science and Engineering A, Vol. 379, 2004, 164-172.
  • [60] JINKEUN OH, SUNG GYU PYO, SUNGHAK LEE, NACK J. KIM, Fabrication of multilayered titanium aluminide sheets by self-propagating high-temperature synthesis reaction using hot rolling and heat treatment, Journal of Materials Science, Vol. 38, 2003, 3647-3651.
  • [61] JOKISAARI J.R., BHADURI S., BHADURI S.B., Microwave activated combustion synthesis of titanium aluminides, Materials Science & Engineering A, Vol. 394, 2005, 385-392.
  • [62] JUNG C.K., JANG J.H., HAN K.S., Numerical simulation of infiltration and solidification processes for squeeze cast Al composites with parametric study, Metallurgical and Materials Transactions A, Vol. 39, 2008, 2736-2748.
  • [63] KACZMAR J.W., PIETRZAK K, WŁOSIŃSKI W., The production and application of metal matrix composite materials, Journal of Materials Processing Technology, Vol. 106, No. 1-3,2000, 58-67.
  • [64] KACZMAR J.W., Spiekane materiały kompozytowe uzyskiwane w procesie mechanicznego wytwarzania stopów i wyciskania, Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław 1997.
  • [65] KAMZNINA O., GOTMAN I., E., SYTSCHEV A., VADCHENKO S., BALIKHINA E., Combustion synthesis of porous Ti-Co alloys for orthopedic applications, International Journal of Self-Propagating High-Temperature Synthesis, Vol. 18, No. 2, 2009, 102-108.
  • [66] KAPTAY G., The threshold pressure of infiltration into fibrous preforms normal to the fibers ' axes, Composites Science and Technology, Vol. 68, No. 1, 2008, 228-237.
  • [67] KARCZEWSKI K., JÓŹWIAK S., KARCZEWSKI K., BOJAR Z., Porous Fe-Al intermetallics fabricated by SHS reaction in volume control environmental reactor, Inżynieria Materiałowa, Vol. 31, No. 3, 2010, 642-645.
  • [68] KEN HAN K., LEE C.W., RICE B.P., Measurements of the permeability of fiber preforms and applications, Composites Science and Technology, Vol. 60, No. 12-13, 2000, 2435-2441.
  • [69] KENNEDY A.R, The effect of TiH2 heat treatment on gas release and foaming in Al-TiH2 preforms, Scripta Materialia, Vol. 47, No. 11, 2002, 763-767.
  • [70] KHINA B.B., FORMANEK B., SOLPAN I., Limits of applicability of the "diffusion-controlled product growth" kinetic approach to modeling SHS, Physica B: Condensed Matter. Vol. 355,2005,14-31.
  • [71] KOIZUMI M., OHYANAGI M., HOSOMI S., TROTSUE A.V., BOROVINSKAYA LP., Composite and methodfor producing the same, US Patent No.: 6, 500, 557 Bl, 2002.
  • [72] KONIECZNY M., Processing and structure of laminated iron-intermetallics composites, Archives of Foundry Engineering, Vol. 8, No. 4, 2008, 71-76.
  • [73] KONOPKA Z., CISOWSKA M., Analiza rozmieszczenia włókien węglowych w kompozycie na osnowie stopu AK7 wykonanego metodą squeeze casting, Archiwum Odlewnictwa, Vol. 2, No. 4,2002,384-389.
  • 74] KOSTECKI M., OLSZYNA A., Modification of mechanical properties of Ti-Al intermetallic matrix by introducing TiB2 ceramic, Composites, Vol. 6, 2006, 65-71.
  • 75] KOVALEV D.YU., PROKUDINA V.K., RATNIKOV V.I., PONOMAREV V.I., Thermal decomposition of TiH2: A TRXRD study. International Journal of Self-Propagating High-Temperature Synthesis, Vol. 19, No. 4, 2010, 253-257.
  • [76] LEFORT P., MAITRE A., TRISTANT P., Influence of the grain size on the reactivity ofTi02/C mixtures, Journal of Alloys and Compounds, Vol. 302, No. 1-2, 2000, 287-298.
  • [77] LEI DOU, ZHANG FU YUAN, JIANQIANG LI, JING LI, XIAOQIANG WANG, Surface tension of molten Al-Si alloy at temperatures ranging from 923 to 1123 K, Chinese Science Bulletin, Vol. 53, 2008, 2593-2598.
  • [78] LIPNICKI Z., Dynamical solidification of metal filling a cooled cylindrical channel, International Communications in Heat and Mass Transfer, Vol. 27, No. 5, 2000, 689-704.
  • [79] LIS J., MIYAMOTO Y., PAMPUCH R., TANIHATA K., Ti3SiC-based materials prepared by HIP-SHS techniques, Materials Letters, Vol. 22, No. 3-4, February 1995, 163-168.
  • [80] LONG S., BEFFORT O., ROHR L., FLOWER H. M., Effect of squeeze infiltration speed on infiltration quality and tensile properties of cast Saffil/AlCu4MgAg composite, International Conference on Composites Materials, Vol. 3, 1997, 274-283.
  • [81] MA YAN, FAN QUNCHENG, ZHANG JINGJUE, SHI JIAN, XIAO GUOQING, GU MEIZHUAN, Microstructural evolution during self-propagating high-temperature synthesis of Ti-Al system, Journal of Wuhan University of Technology-Mater. Sci., 2008, 381-385.
  • [82] MAHDOUK KAMAL, GACHON JEAN CLAUDE, Thermodynamic investigation of the aluminum-chromium system, Journal of Phase Equilibria, Vol. 21, No. 2, 2000, 157-166.
  • [83] MANSOUR RAZAVI, MOHAMMAD REZA RAHIMIPOUR, REZA KABOLI, Synthesis of TiC nanocomposite powder from impure Ti02 and carbon black by mechanically activated sintering, Journal of Alloys and Compounds, Vol. 460, No. 1-2, 2008, 694-698.
  • [84] MERZHANOV A.G., Combustion processes that synthesize materials, Journal of Materials Pro cessing Technology, Vol. 56, No. 1-4, 1996, 222-241.
  • [85] MERZHANOV A.G., KOVALEV D.YU., SHKIRO V.M., PONOMAREV V.I., Equilibrium of products of self-propagating high-temperature synthesis, Doklady Physical Chemistry, Vol. 394, 2004, 34-38.
  • [86] MERZHANOV A.G., BOROVINSKAYA LP., Historical retrospective of SHS: An Autoreview, International Journal of Self-Propagating High-Temperature Synthesis, Vol. 14, 2008, 242-265.
  • [87] MERZHANOV A.G., Thermally coupled processes of self-propagating high-temperature synthesis, Doklady Physical Chemistry, Vol. 434, 2010, 159-162.
  • [88] MICHALSKI A., JAROSZEWICZ J., ROSINSKI M., SIEMIASZKO D., NiAl-Al203 composites produced by pulse plasma sintering with the participation of the SHS reaction, Intermetallics, Vol. 14, No. 6, 2006, 603-606.
  • [89] MICHAUD V.J., COMPTON L.M., MORTENSEN A, Capillarity in isothermal infiltration of alumina fiber preforms with aluminium, Metallurgical and Materials Transactions A, Vol. 25, 1994,2145-2152.
  • [90] MICHAUD V. J., MORTENSEN A., SOMMER J. L., Infiltration of fibrous preforms by a pure metal: Part V. Influence of preform compressibility, Metallurgical and Materials Transactions A, Vol.30, No. 2, 1999, 471-481.
  • [91] MICHAUD V., MORTENSEN A., Infiltration processing of fibre reinforced composites: governing phenomena, Composites Part A: Applied Science and Manufacturing, Vol. 32, No. 8, 2001,981-996.
  • [92] MISHRA P., SETHI G., UPADHYAYA A., Modeling of microwave heating of particulate metals, Metallurgical and Materials Transactions B, Vol. 37, No. 5. 2006, 839-845.
  • [93] MOGILEVSKY P., GUTMANAS E.Y., On thermodynamics off first-phase formation during inter-facial reactions, Materials Science and Engineering A, Vol. 221, No. 1-2, 1996, 76-84.
  • [94] MOLODETSKY I.E., VICENZI E.P., DREIZIN E.L., LAW C.K., Phases of titanium combustion in air, Combustion and Flame, Vol. 112, No. 4, 1998, 522-532.
  • [95] MOOR J.J., FENG H.J., Combustion synthsis of advanced materials: Part I. Reaction parameters, Progress in Materials Science, Vol. 39, 1995, 243-273.
  • [96] MOOR J.J., FENG H.J., Combustion synthesis of advanced materials: Part II. Classification, applications and modeling, Progress in Materials Science, Vol. 39, 1995, 275-316.
  • [97] MORSI K., Review: reaction synthesis processing of Ni-Al intermetallic materials, Materials Science & Engineering A, Vol. 299, 2001, 1-15.
  • [98] MOS SINO P., Some aspects in self-propagating high-temperature synthesis, Ceramics International, Vol. 30, No. 3, 2004, 311-332.
  • [99] MOXSON V.S., IVANOV E., Manufacture of lightweight metal matrix composites with controlled structure, US Patent No. 6,599,466 Bl, 2003.
  • [100] MOXSON V.S., IVANOV E., Bulletproof lightweight metal matrix macrocomposites with conitrolled structure and manufacture the same, US Patent No. 6, 635, 357 B2, 2003.
  • [101] MUHAMMAD ROSTOM ALI, ATSUSHI NISHIKATA, TOORU TSURU, Electrodeposition of aluminum-chromium alloys from AlClj-BPC melt and its corrosion and high temperature oxidation behaviors, Electrochimica Acta, Vol. 42, 1997, 2347-2354.
  • [102]NAPLOCHA K., JANUS, A., KACZMAR J.W., SAMSONOWICZ Z., Technology and mechanical properties of ceramic preforms for composite materials, Journal of Materials Processing Technology, Vol. 106, No. 1-3, 2000, 119-122.
  • [103] NAPLOCHA K., GRANAT K., Combustion synthesis of Al-Cr preforms activated in microwave field. Journal of Alloys and Compounds, Vol. 480, No. 2, 2009, 369-375.
  • [104] NAPLOCHA K., GRANAT K., Microwave activated combustion synthesis of porous Al-Ti structures for composite reinforcing, Journal of Alloys and Compounds, Vol. 486, No. 1/2, 2009, 178-184.
  • [105] NAPLOCHA K., Single Mode Microwave Reactor, Advances in Materials Science Research, Vol. 12, Nova Science Publishers, New York, 2011.
  • [106] NAPLOCHA K., Combustion synthesis and development of Ti-O-C aluminium composites, Journal of Alloys and Compounds, Vol. 509, No. 36, 2011, 8853-8861.
  • [107] NAPLOCHA K., KACZMAR J., GRANAT K., Materiały kompozytowe (MMC) na osnowie stopu aluminium EN AC-44200, Materiały Kompozytowe, 2011, No. 0, 14-17.
  • [108] NAPLOCHA K., TiC and Al-Ti-C skeletons produced by combustion synthesis, Composites Theory and Practice, No. 1, 2012, 50-53.
  • [109] NOVOSELOVA T., CELOTTO S., MORGAN R., FOX P., O'NEILL W., Formation of TiAl intermetallics by heat treatment of cold-sprayed precursor deposits, Journal of Alloys and Compounds, Vol. 436, No. 1-2, 2007, 69-77.
  • [110] OHNUMA I., FUJITA Y., MITSUI H., ISHIKAWA K., KAINUMA R., ISHIDA K., Phase equilibria in the Ti-Al binary system, Acta Materialia, Vol. 48, No. 12, 2000, 3113-3123.
  • [111] OLIVEIRA A. A.M., KAVIANY M., Role of inter- and intraparticle diffusion in nonuniform particle size gasless compacted powder combustion synthesis - II: results and comparison with experiment, International Journal of Heat and Mass Transfer, Vol. 42, 1999, 1075-1095.
  • [112] OLSZOWKA-MYALSKA A., Efekt Kirkendalla-Frenkla w kompozytach aluminiowych z cząstkami aluminidków niklu, Kompozyty, Vol. 3, 2003, 89-92.
  • [113] OTTINGER O., SINGER R.F., An advanced melt infiltration process for the net shape production of metal matrix composites, Z. Metallkd. Vol. 84, No. 12, 1993, 827-831.
  • [114] PAMPUCH R., Some fundamental versus practical aspects of self propagating high-temperature synthesis, Solid State Ionics, Vol. 101-103, No. 2, 1997, 899-907
  • [115] PAN J., LI J.H., FUKUNAGA H., NING X. G., YE H.Q., YAO Z.K., YANG D.M., Microstructural study of the interface reaction between titania whiskers and aluminum, Composites Science and Technology, Vol. 57, No. 3, 1997, 319-325.
  • [116] PENG L.M., WANG J.H., LI H., ZHAO J.H., HE L.H., Synthesis and microstructural characterization of Ti-Al3Ti metal-intermetallic laminate (MIL) composites, Scripta Materialia, Vol. 52, 2005, 243-248.
  • [117] PENG XU, BOMING YU, Developing a new form of permeability and Kozeny-Carman constant for homogeneous porous media by means of fractal geometry, Advances in Water Resources, Vol. 31, No. 1,2008, 74-81.
  • [118] PING ZHU, LI J.C.M., LIU C.T., Reaction mechanism of combustion synthesis of NiAl, Materials Science and Engineering A, Vol. 329-331, 2002, 57-68.
  • [119] PING ZHU, LI J.C.M. , LIU C.T., Adiabatic temperature of combustion synthesis of Al-Ni systems, Materials Science and Engineering A, Vol. 357, 2003, 248-257.
  • [120] PRETORIUS R., Prediction of silicide formation and stability using heats of formation, Thin Solid Films, Vol. 290-291, 1996, 477-484.
  • [121] PYZIK A.J., OTT J.J., JANKOWSKI S., Method for making composite articles that include complex internal geometry, US Patent No. 4, 834, 938, 1989.
  • [122] PYZIK A.J., NEWMAN R.A., CHARTIER M.A.,WETZEL A.M., HANEY C.N., Aluminum boron carbide composite and method to form said composite, US Patent No. 8, 030, 234, 2011.
  • [123] QIAODAN HU, PENG LUO, YOUWEI YAN, Influence of an electric field on combustion synthesis process and microstructures of TiC-Al2Oy-Al composites, Journal of Alloys and Compounds, Vol. 439, No. 1-2, 2007, 132-136.
  • [124] QIAODAN HU, PENG LUO, YOUWEI YAN, Microstructures, densification and mechanical properties of TiC-Al2Oy-Al composite by field-activated combustion synthesis, Materials Science and Engineering A, Vol. 486, No. 1-2, 2008, 215-221.
  • [125] QIU X., WANG J., Experimental evidence of two-stage formation of Al3Ni in reactive Ni/Al multilayer foils, Scripta Materialia,Vol. 56, 2007, 1055-1058.
  • [126] QUNCHENG FAN, CHAI H., ZHIHAO JIN, Dissolution-precipitation mechanism of self-propagating high-temperature synthesis of mononickel aluminide, Intermetallics, Vol. 9,2001, 609-619.
  • [127] REGUŁA T., SOBCZAK J.J., FAJKIEL A., DUDEK P., Effect of applied pressure on the quality of squeeze cast parts made from AlSi9Mg alloy, Archives of Foundry Engineering, Vol. 11, No. 3, 2011,55-60.
  • [128] REGUŁA T., SOBCZAK J.J, MORGIEL J., DUDEK P., DŁUGOSZ P., Wpływ ciśnienia prasowania na charakterystyki mikrostrukturalne stopu AlSUMg, Prace Instytutu Odlewnictwa, Tom LI, Rok 2011, Zeszyt 1,5-14.
  • [129] RITLAND M.A., READEY D.W., Method for making a ceramic metal composite, US Patent No. 5, 735, 332, 1998.
  • [130] RITLAND M.A., HOWE W.T., Metal-infiltated ceramic seal, US Patent No. 6, 338, 906 BI, 2002.
  • [131] ROSIŃSKI M., CIUPIŃSKI L., GRZONKA J., MICHALSKI A., KURZYDLOWSKI K.J., Synthesis and characterization of the diamond/copper composites produced by the pulse plasma sintering (PPS) method, Diamond & Related Materials, Vol. 27-28, 2012, 29-35.
  • [132] RYBAKOV K., SEMENOV V., Microwave heating of electrically conductive materials, Radio-physics and Quantum Electronics, Vol. 48, No. 10-11, 2005, 888-895.
  • [133] SANG K., WEILER L., AULBACH E., Wetting and pressureless infiltration in the CuTi/Al203 system under poor vacuum, Ceramics International, Vol. 36, No. 2, 2010, 719-726.
  • [134] SCHOLZ S., GILLESPIE J.W., HEIDER D., Measurement of transverse permeability using gaseous and liquid flow, Composites Part A: Applied Science and Manufacturing, Vol. 38, No. 9, 2007, 2034-2040.
  • [135] SHANT PRAKASH GUPTA, Intermetallic compounds in diffusion couples of Ti with an Al-Si eutectic alloy, Materials Characterization, Vol. 49, No. 4, 2002, 321-330.
  • [136] SHAO N., DAI J.W., LI G.Y., NAKAE H., HANE T., Effect of La on the wettability ofAl203 by molten aluminum, Materials Letters, Vol. 58, No. 14, 2004, 2041-2044.
  • [137] SHAUL AVRAHAM, PETER BEYER ROLF JANSSEN, NILS CLAUSSEN, WAYNE D. KAPLAN, Characterization of a-Al203-(Al-Si)3Ti composites, Journal of the European Ceramic Society, Vol. 26, No. 13, 2006, 2719-2726.
  • [138] SIORES E., REGO D.DO., Microwave applications in materials joining Journal of Materials Processing Technology, Vol. 48, No. 1-4, 1995, 619-625.
  • [139] SOBCZAK J., Metalowe materiały kompozytowe. Stan aktualny i perspektywy rozwoju, Seminarium „Kompozyty", Częstochowa, 1996, 23-64.
  • [140] STANCULOVIC S., Theoretical synthesis and experimental measurements of slotted waveguide feeding systems for 2.45 GHz industrial microwave heating installations, Universität Fridericiana Karlsruhe, Dissertation 2006.
  • [141] SUJATA M., BHARGAVA S., SANGAL S., On the formation of Ti Al3 during reaction between solid Ti and liquid Al, Journal of Materials Science Letters, Vol. 16, 1997, 1175-1178.
  • [142] TAKAO CHOH, TAKESHI MOHRI, MAKOTO KOBASHI, Fabrication of intermetallic compound matrix composite by spontaneous infiltration and subsequent in situ reaction processes, Materials Processing Technology, Vol. 63, 1997, 379-383.
  • [143] TAO WANG, YU-XIANG LU, MEI-LI ZHU, JUN-SHAN ZHANG, Identification of the comprehensive kinetics of thermal explosion synthesis Ti+3Al->TiAl3 using non-isothermal differential scanning calorimetry, Materials Letters, Vol. 54, 2002, 284-290.
  • [144] THERON C.C., PRETORIUS R., NDWANDWE O.M., LOMBAARD J.C., First phase formation at interfaces: Comparison between Walser-Bené and effective heat of formation model, Materials Chemistry and Physics, Vol. 46, No. 2-3, 1996, 238-247.
  • [145] THIERS L., ALEXANDER S. MUKASYAN ARVIND VARMA, Thermal explosion in Ni-Al sys-tem: influence of reaction medium microstructure, Combustion and Flame, Vol. 131, 2002, 198-209.
  • [146] THOSTENSON, E.T., CHOU, T.W., Microwave processing: fundamentals and applications, Composites Part A: Applied Science and Manufacturing (Incorporating Composites and Composites Manufacturing), Vol 30, No. 9, 1999, 1055-1071.
  • [147] TOMA F.L., STAHR CC, BERGER L.M., SAARO S., HERRMANN M., DESKA D., MICHAEL G., Corrosion resistance of APS- and HVOF- sprayed coatings in the Al203-Ti02 system, Journal of Thermal Spray Technology, Vol. 19, No. 1-2, 2010, 137-147.
  • [148] TORRALBA J.M, LANCAU V., MARTINEZ M.A., VELASCO F., P/M aluminum matrix com-posite reinforced with (AlCr2) Journal of Material Science Letters, Vol. 19, 2000, 1509-1512.
  • [149] VENKATESH T. A., DUNAND D.C., Reactive infiltration processing and secondary compressive creep of NiAl and NiAI- W composites, Metallurgical and Materials Transactions A, Vol. 31, No. 3, 2000, 781-792.
  • [150] VERREY J., MICHAUD V., MANSON J.A.E, Dynamic capillary effects in liquid composite moulding with non-crimp fabrics, Composites Part A: Applied Science and Manufacturing, Vol. 37, No. 1,2006, 92-102.
  • [151] VOJTECH D., VERNER J., SERAK I, SIMENACIK F., BALOG M., NAGY J., Properties of thermally stable PMAl-Cr based alloy, Materials Science and Engineering A, Vol. 458,2007, 371-380.
  • [152] WANG H.Y., JIANG Q.C., LI X.L., ZHAO F., Effect of Al content on the self-propagating high-temperature synthesis reaction of Al-Ti-C system in molten magnesium, Journal of Alloys and Compounds, Vol. 366, No. 1-2, 2004, 9-12.
  • [153] WINZER J., WEILER L., POUQUET J., RÖDEL J., Wear behaviour of interpenetrating alumina-copper composites, Wear, Vol. 271, No. 11-12, 2011, 2845-2851
  • [154] WOŁCZYŃSKI W, JANCZAK-RUSCH J, KLOCH J, GUZIK E, Formation of the structure within Ni-Al alloys of a special application, Archives of Foundry Engineering, Vol. 4, No. 1, 2004, 288-293.
  • [155] WOŁCZYŃSKI W., JANCZAK-RUSCH J., POGODA Z., Formation of the Ni/Al/Ni joint structure applying an isothermal solidification, Archives of Foundry Engineering, 2008, Vol. 8, 337-342.
  • [156] XU L., CUI Y.Y., HAO Y.L., YANG R., Growth of intermetallic layer in multi-laminated Ti/Al diffusion couples, Materials Science and Engineering A, Vol. 435-436, 2006, 638-647.
  • [157] YAMANAKA T., CHOI Y.B., MATSUGI K., YANAGISAWA O., SASAKI G., Influence of pre-form preparation condition on infiltration of molten aluminum, Journal of Materials Processing Technology, Vol. 187-188, 2007, 530-532.
  • [158] YAMAUCHI T., NISHIDA Y., Infiltration kinetics of fibrous preforms by aluminum with solidification, Acta Metallurgica et Materialia, Vol. 43, No. 4, 1995, 1313-1321.
  • [159] YANG CC, NAKAE H., Foaming characteristics control during production of aluminum alloy foam, Journal of Alloys and Compounds, Vol. 313, No. 1-2, 2000, 188-191.
  • [160] YAODONG LIU, WEI LIU, Mechanical alloying and spark plasma sintering of the intermetallic compound Ti50Al50, Journal of Alloys and Compounds,Vol. 440, No. 1-2, 2007, 154-157.
  • [161] YEH C.L., SUNG W.Y., Combustion synthesis of Ni3Al intermetallic compound in self-propagating mode, Journal of Alloys and Compounds, Vol. 384, 2004, 181-191.
  • [162] YOUNG SEOK SONG, Mathematical analysis of resin flow through fibrous porous media, Applied Composite Materials, Vol.13, No. 5, 2006, 335-343.
  • [163] YOUNG-CHUL WOO, HO-JAE KANG, DEUG J. KIM, Formation of TiC particle during carbothermal reduction of Ti02, Journal of the European Ceramic Society, Vol. 27, No. 2-3, 2007,719-722.
  • [164] YUE T.M., Squeeze casting of high-strength aluminium wrought alloy AA7 010, Journal of Materials Processing Technology, Vol. 66, No. 1-3, 1997, 179-185.
  • [165] YUN LU, MITSUJI HIROHASHI, Thermal behavior during combustion synthesis on intermetallic compound of Ni-Al system, Journal of Materials Science Letters, Vol. 18, 1999, 395-398.
  • [166] YURIY L., SHOSHIN MIKHAYLO A. TRUNOV XIAOYING ZHU, SCHOENITZ M., DREIZIN EX., Ignition of aluminum-rich Al-Ti mechanical alloys in air, Combustion and Flame, Vol. 144, 2006, 688-697.
  • [167] ZHANG F., LU L., LAI M. O., Study of thermal stability of mechanically alloyed Ti-75% Al powders, Journal of Alloys and Compounds, Vol. 297, No. 1-2, 2000, 211-218.
  • [168] ZHANG, F., HUANG, W., CHANG, Y. A., Equivalence of the generalized bond-energy model, the Wagner-Schottky-type model and the compound-energy model for ordered phases, Calphad, Vol. 21, No. 3, 1997, 337-348.
  • [169] ZHI MEI, PENG YU, TJONG S.C., Structure, thermal and mechanical properties of in situ Al-based metal matrix composite reinforced with Al203 and TiC submicron particles, Materials Chemistry and Physics, Vol. 93, No. 1, 2005, 109-116.
  • [170] ZHIGUANG LIU, STILIANA RAYNOVA, DELIANG ZHANG, BRIAN GABBITAS, Study on the self sustained reactions in an Al-Ti02 composite powder produced by high-energy mechanical milling, Materials Science and Engineering: A, Vol. 449^51, 2007, 1107-1110.
  • [171] ZHOU SHUANGJIE, HAWLEY MARTIN C, A study of microwave reaction rate enhancement effect in adhesive bonding of polymers and composites, Composite Structures, Vol. 61, No. 4,2003, 303-309.
  • [172] ZIENTARA D., BUCKO M., LIS J., Alon-based materials prepared by SHS technique, Journal of the European Ceramic Society, Vol. 27, No. 2-3, 2007, 775-779.
  • [173] ZOU BINGLIN, SHEN PING, GAO ZHONGMING, JIANG QICHUAN, Combustion synthesis of TiCx-TiB2 composites with hypoeutectic, eutectic and hypereutectic microstructures, Journal of the European Ceramic Society, Vol. 28, No. 11, 2008, 2275-2279.
  • [174] Norma - PN-EN 1706:2010, Aluminium i stopy aluminium - Odlewy - Skład chemiczny i własności mechaniczne, PKN, 2010.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-92f81fc1-1590-453d-bb13-58f082d50839
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.