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Abstract. In this text a new property of geometric nature of the Chebyshev polynomials is 

given. It is proven that the lengths of diagonals of a regular n-gon with the side of length 

equal to one are the sums of positive roots of the respective renormalized Chebyshev poly-

nomials of one from among four types. Some new special decompositions of differences 

of values of the Chebyshev polynomials are also presented. 
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Introduction 

The aim of this short text is to present one more fundamental property of 

Chebyshev polynomials related to the geometric-analytical nature of their roots. 

We want to emphasize that this property seems to be completely original. 

Inspired by paper [1], we have noticed a slightly deeper relationship between 

the length of diagonals of the regular �-gons and the sums of positive roots of any 
of all four types of Chebyshev polynomials (see [2-4]): 

1��	kind ��(cos	 �) = cos	(� �), � ∈ ℝ,
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cos��� +
1
2
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2
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	2ℤ + 1
,

4�ℎ	kind ��(cos	 �) =

sin��� +
1
2
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sin	 �
2

, � ∈ ℝ ∖ 2
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for every � ∈ ℕ ∪ {0}. For the reasons of cosmetic nature it is better to consider 
the re-scaling Chebyshev polynomials 
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��
∗ (�): = 2�� ��

2
� , ��

∗ (�): = �� ��
2
� , ��

∗ (�): = �� ��
2
�, 

and ��
∗ (�): = �� ��

2
� ,  � ∈ ℕ. 

We note that polynomials ��
∗ (�) are called either Vieta-Lucas polynomials 

[5, 6] or Dickson’s polynomials [7]. Whereas ��
∗ (�) are called Vieta-Fibonacci 

polynomials [6]. Properties of algebraic and combinatoric nature of these polyno-

mials are discussed for example in papers [5-11]. One of the spectacular properties 

of ��
∗ (�) are the following decompositions proved in [6]: 

�����
∗ (�) − �����

∗ (� + ���) = �����
∗ (�) − ����� − ������ =

= � (

����

���
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where � = exp	 � 	


����
�; 

(−1)����
∗ (� �) + ���

∗ (� + ���) = (−1)����
∗ (� �) + ��� + ���� =

= � (

����

���

� − ������ + ���������), (2) 

where � = exp	 � 	

��
�, for every � ∈ ℕ, � ∈ ℂ and � ≠ 0. For example, we obtain 

the following special ones 
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for � ≠ � 
, � ∈ ℤ, 
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for ! ≠



�
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, � ∈ ℤ,  

(−1)�  ���
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2
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2
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2�  ����

���
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for ! ≠ 0.  

Other fundamental properties, especially of an analytic nature, of polynomials ��
∗ , ��

∗ , ��
∗  and ��

∗  are presented in monographs [2, 4], see also interesting new 

results on a moment problem [12]. 

1. Main result 

Positive roots of polynomials ��
∗ , ��

∗ , ��
∗  and ��

∗ , respectively, are listed 

below [2]: 

��,� = 2 cos	 �(2� − 1)

2�  , � = 1,2, … , "�

2
# ,

$�,� = 2 cos	 � �
� + 1
 , � = 1,2, … , "�

2
# ,

%�,� = 2 cos	 �(2� − 1)

2� + 1

 , � = 1,2, … , &� + 1

2
' ,

(�,� = 2 cos	 � 2�

2� + 1

 , � = 1,2, … , "�
2
# ,

 

(we note that zeros ��,�, � = 1,2, … , "�
�
#, could also be deduced from (1) for 

� = exp	 � 	


����
� and from (2) for � = exp	 � 	


��
�). 

We will present now our main result. 

Theorem. Let � ∈ ℕ, � ≥ 4, and )�,)�, … ,)��� denote the vertices of a regular �-gon * with the side of length . If � =



�
 and �()�,)�) denotes the distance 

between )� and )�, then we have 
(i)  

�	)�,)

 =
sin	+�


sin � = �
��	cos�
 
for 1 ≤ + ≤ "�

�
#, 
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#, 

(iv)  

�	)�,)�

 = 2 , cos�	2� − 1
��,




���

 

for 2 ≤ 2+ ≤ "�
�
#, 
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���
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�
#. 

Corollary. By comparing the terms of sums from identities (�%) and (%) with the 
roots of all four types of rescaling Chebyshev polynomials ��
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∗ , 
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for 1 ≤ 2+ + 1 ≤ "�
�
#. 
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Proof of Theorem. If � denotes the radius of the circle circumscribed on *, then 
by the law of sines we get � =

�

� sin	 �
 and �()�,)
) =

sin	 (
�)

sin	 �
, + ≤ "�

�
#. Hence 

we obtain 
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�
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The last identity implies  
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��


���
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for 2 ≤ 2+ ≤ "�
�
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�()�,)�
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���

�()�,)����) − �()�,)����)) = 1 + 2 , cos		2��



���

, 

for 2 ≤ 2+ + 1 ≤ "�
�
#, which ends the proof.   

Conclusions 

 In the paper we have described the new property of zeros of renormalized 

Chebyshev polynomials. It has been proven that the lengths of diagonals of a regu-

lar n-gon with the side of length equal to one are the sums of positive roots of the 
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respective renormalized Chebyshev polynomials of one from among four types. 

Formulae for decompositions of differences of values of the Chebyshev poly- 

nomials have been presented as well. 
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