PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Addressing sedimentation issues : Modelling the rating curve and river sediment transport using HEC-RAS 6.1 application

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Fluvial sedimentation refers to the deposition of materials transported by water along the river, which can reduce the river’s holding capacity. Over time, the process has become a serious global issue, significantly contributing to recurrent flooding. This study aims to develop a sediment rating curve and transport model to address the high sedimentation in the Krueng Langsa River, an issue requiring urgent action. The data set includes bedload measurements using a grab sampler, suspended load collected using a 1-dm3 scale plastic bottle, hydrometric measurements using a currentmeter, as well as planned flood discharge, river geometry, and roughness. Sediment transport was modelled using the HEC-RAS 6.1 application. The results indicated sediment transport and movement (τ0 > τc). Based on the sediment rating curve, the regression equations were: Qs = 0.0707Qw2 + 109.72Qw (upstream), Qs = 0.0075Qw2 + 122.25Qw (midstream), and Qs = 0.0043Qw2 + 103.97Qw (downstream), where Qs is the sediment discharge and Qw is the water discharge. The coefficient of determination (R2) values were 0.9761 (upstream), 0.9782 (midstream), and 0.9796 (downstream), indicating an excellent correlation close to 1. The sediment transport model revealed changes in the riverbed due to sediment movement, with degradation of 0.365 m at the upstream review point (RS 346), aggradation of 1.655 m at the midstream point (RS 270), and aggradation of 0.218 m at the downstream point (RS 209). Extreme aggradation occurred at RS 364 (2.08 m), while extreme degradation occurred at RS 271 (0.482 m). The sediment rating curve and transport model provide valuable river improvement and management insights, offering a potential solution for mitigating recurrent flooding.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
36--44
Opis fizyczny
Bibliogr. 51 poz., rys., tab., wykr.
Twórcy
  • Universitas Syiah Kuala, Engineering Faculty, Civil Engineering Department, Syech Abdur-Rauf No. 7 Darussalam, 23111, Banda Aceh, Indonesia
  • Universitas Syiah Kuala, Engineering Faculty, Civil Engineering Department, Syech Abdur-Rauf No. 7 Darussalam, 23111, Banda Aceh, Indonesia
  • Universitas Syiah Kuala, Engineering Faculty, Civil Engineering Department, Syech Abdur-Rauf No. 7 Darussalam, 23111, Banda Aceh, Indonesia
  • Universitas Syiah Kuala, Engineering Faculty, Civil Engineering Department, Syech Abdur-Rauf No. 7 Darussalam, 23111, Banda Aceh, Indonesia
autor
  • Universitas Syiah Kuala, Engineering Faculty, Civil Engineering Department, Syech Abdur-Rauf No. 7 Darussalam, 23111, Banda Aceh, Indonesia
autor
  • Universitas Syiah Kuala, Engineering Faculty, Civil Engineering Department, Syech Abdur-Rauf No. 7 Darussalam, 23111, Banda Aceh, Indonesia
autor
  • Universitas Samudra, Engineering Faculty, Civil Engineering Department, Langsa, Indonesia
Bibliografia
  • Amri, K., Mase, L.Z. and Putra, A.M. (2023) “Analisis laju sedimentasi pada Sungai Air Sambat Kabupaten Kaur menggunakan Metode Meyer Peter Muller dan Van Rijn [Analysis of sedimentation rate in the Air Sambat River, Kaur Regency, using the Meyer Peter Muller and Van Rijn methods],” Modern Indonesian Journal of Contemporary Multidisciplinary Research, 2(2), pp. 151–164. Available at: https://doi.org/10.55927/modern.v2i2.3427.
  • Anggraini, R.R., Yanuhar, U. and Risjani, Y. (2020) “Characteristic of sediment at Lekok coastal waters, Pasuruan Regency, East Java,” Jurnal Ilmu dan Teknologi Kelautan Tropis, 12(1), pp. 235–246. Available at: https://doi.org/10.29244/jitkt.v12i1.28705.
  • Azmeri, A. et al. (2017) “Completion of potential conflicts of interest through optimization of Rukoh Reservoir operation in Pidie District, Aceh Province, Indonesia,” AIP Conference Proceedings, 1903, 100001. Available at: https://doi.org/10.1063/1.5011611.
  • Azmeri, A. et al. (2022a) “An update on reservoir operating rules following changes on the effective capacity due to land erosion,” The 13th of Aceh International Workshop and Expo on Sustainable Tsunami Disaster Recovery (The 13th AIWEST-DR 2021). E3S Web of Conferences, 3, 40, 01008. Available at: https://doi.org/10.1051/e3sconf/202234001008.
  • Azmeri, A. et al. (2022b) “Surface erosion hazard and sediment yield for Keuliling Reservoir in Indonesia,” Journal of Water and Land Development, 52, pp. 108–118. Available at: https://doi.org/10.24425/jwld.2022.140380.
  • Azmeri, A., Legowo, S. and Rezkina, N. (2020) “Interphase modeling of soil erosion hazard using a Geographic Information System and the universal soil loss equation,” Journal of Chinese Soil and Water Conservation, 51(2), pp. 65–75. Available at: https://doi.org/10.29417/JCSWC.202006_51(2).0003.
  • Basri, H. et al. (2020) “Simulation of sediment transport in Krueng Baro River, Indonesia,” Journal of Disaster Risk Studies, 12(1), a934, pp. 1–9. Available at: https://doi.org/10.4102/jamba.v12i1.934.
  • Brunner, G.W. (2021) HEC-RAS river analysis system user’s manual. Version 6.0. Davis, CA: US Army Corps of Engineers Institute for Water Resources Hydrologic Engineering Center. Available at: https://www.scribd.com/document/525955663/HEC-RAS-2D-User-s-Manual-v3-20210619-180108 (Accessed: March 09, 2024).
  • Cahyani, H.C. et al. (2021) “Prediksi laju sedimentasi pada Sungai Jatiroto [Prediction of sedimentation rate in the Jatiroto River],” Jurnal Rekayasa Sipil, 17(1), pp. 64–71. Available at: https://doi.org/10.25077/jrs.17.1.64-71.2021.
  • Cheng, D. et al. (2024) “A two-phase flow model for sedimentation and consolidation,” Applied Mathematical Modelling, 132, pp. 129–145. Available at: https://doi.org/10.1016/j.apm.2024.04.029.
  • Christine, M. (2009) “Pembentukan kelokan Sungai [River meander formation],” Majalah Ilmiah Maranatha, 16(2), pp. 34–46. http://repository.maranatha.edu/3923/1/Pembentukan%20Kelokan%20Sungai.pdf (Accessed: September 02, 2024).
  • Das, B. and Vadivel, S.T (2022) “Sediment transport modelling in stream flow by HEC-RAS model – A state-of-the-art,” Recent Advances in Civil Engineering. Lecture Notes in Civil Engineering, 233, pp. 481–491. Available at: https://doi.org/10.1007/978-981-19-0189-8_39.
  • Davies, G. and Woodroffe, C.D. (2010) “Tidal estuary width convergence: Theory and form in north Australian estuaries,” Earth Surface Processes and Landforms, 35(7), pp. 737–749. Available at: https://doi.org/10.1002/esp.1864.
  • Dean, D.J. and Topping, D.J. (2024) “The effects of vegetative feedbacks on flood shape, sediment transport, and geomorphic change in a dryland river: Moenkopi Wash, AZ,”. Geomorphology, 447, 109017. Available at: https://doi.org/10.1016/j.geomorph.2023.109017.
  • Dehghan-Souraki, D. et al. (2024) “Optimizing sediment transport models by using the Monte Carlo simulation and Deep Neural Network (DNN): A case study of the Riba-Roja Reservoir,” Environmental Modelling and Software, 175. Available at: https://doi.org/10.1016/j.envsoft.2024.105979.
  • Dinas Pengairan Aceh (2015) Survey Investigasi Desain (SID) Sungai Krueng Langsa (Migas Aceh [Survey and Investigation Design (SID) of the Krueng Langsa River (Migas Aceh). Banda Aceh: Dinas Pengairan Aceh.
  • Dinas Pengairan Aceh (2022) Master plan pengendalian banjir WS kewenangan (swakelola) [Master plan for flood control of the authority watershed (self-managed)]. Banda Aceh: Dinas Pengair-an Aceh.
  • Farajzadeh, S. et al. (2014) “Determining the best method for estimating the bed load through HEC-RAS model (A case study for Taleghan Dam),” Bulletin of Environment, Pharmacology and Life Sciences, 3(3), pp. 20–27. Available at: https://bepls.com/vol3_spl_III/4.pdf (Accessed: August 25, 2024).
  • Graterol, E.P. et al. (2024) “Numerical modelling of pore water pressure response beneath a raft foundation during real river floods,” Journal of Hydrology, 638, 131557. Available at: https://doi.org/10.1016/j.jhydrol.2024.131557.
  • Hambali, R. and Apriayanti, Y. (2016) “Studi Karakteristik Sedimen Dan Laju Sedimentasi Sungai Daeng [Study of sediment characteristics and sedimentation rate in the Daeng River],” Jurnal Fropil, 4(2), pp. 165–174. Available at: https://media.neliti.com/media/publications/55918-ID-studi-karakteristik-sedimen-dan-laju-sed.pdf (Accessed: January 09, 2024).
  • Hardiyatmo, H.C. (2012) Mekanika tanah I [Soil mechanics I]. Yogyakarta: Gadjah Mada University Press.
  • Hariyadi, J.S., Istiarto, I. and Raharjo, A.P. (2023) “Evaluation of flood control performance in the Talangsari Watershed, Samarinda, East Kalimantan,” INERSIA Informasi Dan Ekspose Hasil Riset Teknik Sipil Dan Arsitektur, 19(1), pp. 1–11. Available at: https://doi.org/10.21831/inersia.v19i1.54144.
  • Hermawan, A. and Afiato, E. (2021) “Analisis angkutan sedimen dasar (bed load) pada Saluran Irigasi Mataram Yogyakarta [Analysis of bedload sediment transport in the Mataram Irrigation Canal, Yogyakarta],” Teknisia, 26(1), pp. 20–30. Available at: https://doi.org/10.20885/teknisia.vol26.iss1.art3.
  • Hidayah, E. et al. (2023) “Flood hazard mapping of the Welang river, Pasuruan, East Java, Indonesia,” Journal of Applied Water Engineering and Research, 11(3), pp. 333–344. Available at: https://doi.org/10.1080/23249676.2022.2114025.
  • Iradah, M. (2022) Tiga kecamatan di Langsa dikepung banjir [Three sub-districts in Langsa surrounded by floods]. Banda Aceh: Pemerintah Aceh. Available at: https://acehprov.go.id/berita/kategori/sosial-kemasyarakatan/tiga-kecamatan-di-langsa-dike-pung-banjir (Accessed: August 14, 2024).
  • Jobe, A., Kalra, A. and Ibendahl, E. (2018) “Conservation Reserve Program effects on floodplain land cover management,” Journal of Environmental Management, 214, pp. 305–314. Available at: https://doi.org/10.1016/j.jenvman.2018.03.016.
  • Joshi, N. et al. (2019) “Application of HEC-RAS to study the sediment transport characteristics of Maumee River in Ohio,” World Environmental and Water Resources Congress, pp. 257–267. Available at: https://doi.org/10.1061/9780784482353.024.
  • Junaidi and Wigati, R. (2011) “Analisis parameter statistik butiran sedimen dasar pada sungai alamiah (studi kasus Sungai Krasak Yogyakarta) [Analysis of statistical parameters of bedload particles in natural rivers (case study of Krasak River, Yogyakarta],” Wahana Teknik Sipil, 16(2), pp. 46–57. Available at: https://jurnal.polines.ac.id/index.php/wahana/article/view/102 (Accessed: August 28, 2024).
  • Kamarudin, M.K.A. et al. (2017) “Sedimentation study on upstream reach of selected rivers in Pahang River Basin, Malaysia,” International Journal on Advanced Science, Engineering and Information Technology, 7(1), pp. 35–41. Available at: https://doi.org/10.18517/ijaseit.7.1.971.
  • Kim, W. et al. (2009) “Delta progradation driven by an advancing sediment source: Coupled theory and experiment describing the evolution of elongated deltas,” Water Resources Research, 45, W06428, Available at: https://doi.org/10.1029/2008WR007382.
  • Latif, F., Said, M. and Amalia, A.Z. (2019) “Studi pergerakan sedimen akibat fluktuasi debit pada saluran terbuka (uji laboratorium) [Study of sediment movement due to discharge fluctuations in an open channel (laboratory test)],” Jurnal Teknik Hidro, 12(1), pp. 34–44. Available at: https://journal.unismuh.ac.id/index.php/hidro/article/view/2465/0 (Accessed: August 14, 2024).
  • Meijer, R.J.D. et al. (2002) “Gradation effects in sediment transport,” Coastal Engineering, 47(2), pp. 179–210. Available at: https://doi.org/10.1016/S0378-3839(02)00125-4.
  • Mohd Nasir, M.L. and Abustan, M.S. (2022) “Modeling of sediment transport at Sungai Mersing by using HEC-RAS,” Recent Trends in Civil Engineering and Built Environment, 3(1), pp. 555–561. Available at: https://publisher.uthm.edu.my/periodicals/index.php/rtcebe/article/view/3216 (Accessed: August 14, 2024).
  • Noor, D.M., Hidayah, S. and Talib, A. (2022) “Application of HEC-RAS to estimate the sediment transport in Cameron Highlands, Pahang, Malaysia,” Recent Trends in Civil Engineering and Built Environment, 3(1), pp. 872–883. Available at: http://publisher.uthm.edu.my/periodicals/index.php/rtcebe/article/view/3155 (Accessed: August 20, 2024).
  • Novelyne, F.G., Nurhayati, N. and Gunarto, D. (2024) “Penerapan HEC-RAS untuk analisis angkutan sedimen dasar terhadap debit angkutan sedimen oada Saluran Parit Berkat [Application of HEC-RAS for the analysis of bottom sediment transport in relation to sediment transport discharge in the Berkat Drainage Channel],” Teras Jurnal 14(1), pp. 251–264. Available at: https://doi.org/10.29103/tj.v14i1.1070.
  • Peraturan (2011) Peraturan Pemerintah Republik Indonesia No. 38 Tahun 2011 tentang sungai [Government Regulation of the Republic of Indonesia number: 38/2011 regarding river]. Available at: https://peraturan.go.id/id/pp-no-38-tahun-2011 (Accessed: September 10, 2024).
  • Rachman, R.A. et al. (2023) “Studi karakteristik sedimen dasar perairan Tanjung Pasir Banten menggunakan metode Gradistat [Study of the characteristics of bottom sediment in Tanjung Pasir, Banten using the Gradistat method],” Buletin Oseanografi Marina, 12(2), pp. 201–212. Available at: https://doi.org/10.14710/buloma.v12i2.48287.
  • Rizky, K.M., Simanjutak, R.V. and Urfan, F. (2022) “Monitoring laju sedimentasi di Daerah Aliran Sungai (DAS) hulu Kota Langsa [Monitoring of sedimentation rate in the upper watershed of Langsa City],” Jurnal Pendidikan Geosfer, 7(2), pp. 285–294. Available at: https://doi.org/10.24815/jpg.v7i2.28878.
  • Rodríguez-Padilla, I., Mariño-Tapia, I. and Ruiz de Alegría-Arzaburu, A. (2024) “Daily timescale analysis of sediment transport and topographic changes on a mesotidal sandy beach under low to moderate wave conditions,” Marine Geology, 474, 107323. Available at: https://doi.org/10.1016/j.margeo.2024.107323.
  • Sassi, M.G. et al. (2011) “Tidal impact on the division of river discharge over distributary channels in the Mahakam Delta,” Ocean Dynamics, 61, pp. 2211–2228. Available at: https://doi.org/10.1007/s10236-011-0473-9.
  • Sassi, M.G. et al. (2012) “Downstream hydraulic geometry of a tidally influenced river delta,” Journal of Geophysical Research, 117, F04022. Available at: https://doi.org/10.1029/2012JF002448.
  • Sherriff, S.C. et al. (2015) “Investigating suspended sediment dynamics in contrasting agricultural catchments using ex situ turbidity-based suspended sediment monitoring,” Hydrology and Earth System Sciences, 19(8), pp. 3349–3363. Available at: https://doi.org/10.5194/hess-19-3349-2015.
  • Shiami, F.A.R., Lasminto, U. and Wardoyo, W. (2017) “Prediksi laju sedimentasi pada tampungan Bendungan Tugu Trenggalek [Prediction of sedimentation rate in the Tugu Dam Reservoir, Trenggalek],” Jurnal Teknik ITS, 6(2). Available at: https://doi.org/10.12962/j23373539.v6i2.24577.
  • Siqueira, V.A. et al. (2016) “Real-time updating of HEC-RAS model for streamflow forecasting using an optimization algorithm,” Revista Brasileira de Recursos Hídricos Brazilian Journal of Water Resources, 4, pp. 855–870. Available at: https://doi.org/10.1590/2318-0331.011616086.
  • Stajnko, J.K., Jecl, R. and Perc, M.N. (2023) “Advances in monitoring and understanding the dynamics of suspended-sediment transport in the River Drava, Slovenia: An analysis more than a decade-long,” Applied Science, 13, 9036, pp. 1–17. Available at: https://doi.org/10.3390/app13159036.
  • Tassi, P. et al. (2023) “GAIA – a unified framework for sediment transport and bed evolution in rivers, coastal seas and transitional waters in the TELEMAC-MASCARET modeling system,” Environmental Modelling & Software, 159, 105544. Available at: https://doi.org/10.1016/j.envsoft.2022.105544.
  • Vas, L. and Tamás, E.A. (2023) “Surrogate method for suspended sediment concentration monitoring on the alluvial reach of the River Danube (Baja, Hungary),” Applied Sciences, 13(10), 5826. Available at: https://doi.org/10.3390/app13105826.
  • Wibisono, K. (2018) “Kajian sedimentasi di Sub-DAS Separi DAS Mahakam Kalimantan Timur [Study of sedimentation in the Separi Sub-Watershed of the Mahakam Watershed, East Kalimantan],” Jurnal Geografi: Media Informasi Pengembangan dan Profesi Kegeografian, 15(1), pp. 1–6. Available at: https://journal.unnes.ac.id/nju/JG/article/view/14892 (Accessed: August 10, 2024).
  • Wiryamanta, D.R., Sumiadi, S. and Dermawan, V. (2021) “Kajian distribusi konsentrasi sedimen suspensi menggunakan TSS Meter pada Sungai Brantas di Desa Pendem Kota Batu [Study of suspension sediment concentration distribution using TSS Meter on the Brantas River in Pendem Village, Batu City],” Jurnal Teknologi dan Rekayasa Sumber Daya Air, 1(2), pp. 379–392. Available at: https://doi.org/10.21776/ub.jtresda.2021.001.02.04.
  • Zainuddin, M.T.M. et al. (2023) “Pemodelan sedimentasi menggunakan HEC-RAS 6.1 untuk menganalisis perubahan elevasi dasar Sungai Tondano, Sulawesi Utara [Sedimentation modeling using HEC-RAS 6.1 to analyze the changes in bedload elevation of the Tondano River, North Sulawesi],” Jurnal Teknik Hidraulik, 14, pp. 41–54. Available at: https://doi.org/10.32679/jth.v14i1.721.
  • Zhang, Y. et al. (2023) “Effect of natural flood and water-sediment regulation processes on nutrient concentration and transport in the Yellow River,” Applied Geochemistry, 159, 105853. Available at: https://doi.org/10.1016/j.apgeochem.2023.105853.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-92f64b9e-62de-4b64-b7fb-4b1bd20c0435
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.