Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Fracture in a revolving tube due to creep deformation and thermal-mechanical fatigue is a growing concern in industrial equipment research and production, especially after long-term exposure to corrosion and high-temperature conditions in roasting furnaces. The calcination temperature and residence time are crucial in the catalyst production process, with optimal conditions en-hancing catalyst activity and stability. To improve the longevity of roasting furnaces, optimizing the construction structure of the calciner is critical. This study develops a novel calciner structure and mathematical models to understand the effect of structural parameters on critical performance. Computer simulations, predictive modelling, and rotational velocity analysis of the novel calciner were performed using a DEM. The effects of the baffle angle and overlap ratio on the flow pattern and MRT were studied through simulations and experiments. The main conclusions are as follows: (1) The operating parameter with the greatest effect on the MRT was the rotational angular velocity, followed by the baffle angle and overlap ratio. (2) The MRT calculation based on the numerical method model showed an error of no more than 10.0% compared to the actual measurement data, confirming the model’s accuracy. Our study provides a theoretical foundation for a deeper understanding of the complex MRT and flow field processes within this novel calciner. It also aids in optimizing the working parameters, performance, and structure of pilot equipment while offering fundamental data for future industrial applications.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
25--33
Opis fizyczny
Bibliogr. 32 poz., rys., tab., wz.
Twórcy
autor
- College of New Energy, China University of Petroleum
- National Research Center for Drying Technology and Equipment Engineering Technology, Tianhua Chemical Machinery and Automation Institute Co., Ltd Lanzhou, China
autor
- Wanhua Chemical Group Co., Ltd Yantai, China
autor
- College of New Energy, China University of Petroleum
autor
- National Research Center for Drying Technology and Equipment Engineering Technology, Tianhua Chemical Machinery and Automation Institute Co., Ltd Lanzhou, China
autor
- Sinopec Catalyst Co., LTD. Changling branch Yueyang, China
autor
- Sinopec Catalyst Co., LTD. Changling branch Yueyang, China
autor
- College of New Energy, China University of Petroleum
autor
- College of New Energy, China University of Petroleum
Bibliografia
- 1. Zhao, J., Zhao, Q. & Zhao, Q. (2011). The new generation of vertical shaft calciner technology. John Wiley & Sons, Ltd. DOI: 10.1002/9781118061992.ch157.
- 2. Yang, Y., Gong, S., Ning, Q., Zhou, X. & Zhao, H. (2018). Development and application of electrocalciners with increased calcination temperature. In Light Metals, 1363–1371. DOI: 10.1007/978-3-319-72284-9_178.
- 3. Qi, L., Zhao, Z., Wang, R., Gao, W., Li, J. & Zhang, Y. (2020). Simultaneous Desulfurization and Denitrification Using La–Ce–V–Cu–ZSM-5 Catalysts in an Electrostatic Precipitator. ACS Omega. DOI: 10.1021/acsomega.0c00808.
- 4. Sinyavskii, D.P. & Gopkalo, A.P. (1979). Thermal fatigue of chromium-molybdenum steels used in sintering machine and roasting furnace components. Strength of Materials, 11(11), 1202–1205. DOI: 10.1007/bf00767041.
- 5. Lu, S., Zhang, P., Qin, C., Wang, X., Luo, F. & Zhou, J. (2006). The analysis on causes of rupture of a HP-NB high temperature alloy radiant furnace tube. In ASME Pressure Vessels and Piping Conference, 321–326. DOI: 10.1115/PVP2006-ICPVT-11-93008.
- 6. Ning, X.J., Cheng, S.S. & Xie, N.Q. (2009). Analysis of temperature, stress, and displacement distributions of staves for a blast furnace. Internat. J. Minerals, Metal. Mater. 16(5), 512–516. DOI: 10.1016/S1674-4799(09)60089-3.
- 7. Wang, H., Chen, Y., Xie, K., Wang, D. & Zhou, J., (2009). Strength and fatigue fracture analysis of the hydro--damper of a rotary kiln. J. Mech. Strength, 31(6), 992–998. DOI: 10.1061/41039(345)45.
- 8. Wen-Xi, D. & Ke-Zhong, S.(2006). Analysis of roasting furnace fracture and invalidation. Inner Mongolia Petrochemical Industry.
- 9. Hasan, A.M., Guo, S.M. & Wahab, M.A. (2009). Analysis of fracture in high-temperature vacuum tube furnace. J. Failure Anal. Prev. 9, 262–269. DOI: 10.1007/s11668-009-9236-z.
- 10. Rao, M.A., Babu, R.S. & Kumar, M.P. (2017). Failure investigation of a cooling coil tube in zinc roaster furnace. Engin. Failure Anal. 77, 118–125. DOI: 10.1016/j.engfailanal.2017.01.004.
- 11. Da Ros, S., Barbosa-Coutinho, E., Schwaab, M., Calsavara, V. & Fernandes-Machado, N.R. (2013). Modeling the effects of calcination conditions on the physical and chemical properties of transition alumina catalysts. Mat. Character. 80, 50–61. DOI: 10.1016/j.matchar.2013.03.005.
- 12. Helwani, Z., Ramli, M., Saputra, E., Putra, Y.L., Simbolon, D.F., Othman, M.R. & Idroes, R. (2020). Composite catalyst of palm mill fly ash-supported calcium oxide obtained from eggshells for transesterification of off-grade palm oil. Catalysts, 10(7), 724. DOI: 10.3390/catal10070724.
- 13. Sudah, O.S., Chester, A.W., Kowalski, J.A., Beeckman, J.W. & Muzzio, F.J. (2002). Quantitative characterization of mixing processes in rotary calciners. Powder Technol. 126(2), 166–173. DOI: 10.1016/S0032-5910(02)00009-8.
- 14. Chatterjee, A., Sathe, A.V. & Mukhopadhyay, P.K.. (1983). Flow of materials in rotary kilns used for sponge iron manufacture: part ii. effect of kiln geometry. Metal. Transact. B, 14(3), 383–392. DOI: 10.1007/BF02654357.
- 15. Chen, I.Y., Navodia, S., Yohannes, B., Nordeck, L., Machado, B., Ardalani, E. & Cuitiño, A.M. (2021). Flow of a moderately cohesive FCC catalyst in two pilot-scale rotary calciners: Residence time distribution and bed depth measurements with and without dams. Chem. Engin. Sci. 230, 116211. DOI: 10.1016/j.ces.2020.116211.
- 16. Pichler, M., Haddadi, B., Jordan, C., Norouzi, H. & Harasek, M. (2021). Influence of particle residence time distribution on the biomass pyrolysis in a rotary kiln. J. Anal. Appl. Pyrol. 158, 105171. DOI: 10.1016/j.jaap.2021.105171.
- 17. Mikulčić, H., Vujanović, M., Fidaros, D.K., Priesching, P., Minić, I., Tatschl, R. & Stefanović, G. (2012). The application of CFD modelling to support the reduction of CO2 emissions in cement industry. Energy, 45(1), 464–473. DOI: 10.1016/j.energy.2012.04.030.
- 18. Chaudhuri, B., Muzzio, F.J. & Tomassone, M.S. (2010). Experimentally validated computations of heat transfer in granular materials in rotary calciners. Powder Technol. 198(1), 6–15. DOI: 10.1016/j.powtec.2009.09.024.
- 19. Tom assone, M.S., Chaudhuri, B. & Muzzio, F.J. Heat Transfer in Granular Flow in Rotary Calciners: Experiments and Particle Dynamics Simulations.
- 20. Chaudhuri, B., Muzzio, F.J. & Tomassone, M.S. (2011). Experimentally validated numerical modeling of heat transfer in granular flow in rotating vessels. Heat Transfer: Mathematical Modelling, Numerical Methods and Information Technology, 271–306.
- 21. Santos, D.A., Barrozo, M.A., Duarte, C.R., Weigler, F. & Mellmann, J. (2016). Investigation of particle dynamics in a rotary drum by means of experiments and numerical simulations using DEM. Advanced Powder Technol. 27(2), 692–703. DOI: 10.1016/j.apt.2016.02.027.
- 22. Iroba, K.L., Mellmann, J., Weigler, F., Metzger, T. & Tsotsas, E. (2011). Particle velocity profiles and residence time distribution in mixed-flow grain dryers. Granular Matter. 13, 159–168. DOI: 10.1007/s10035-010-0222-7.
- 23. Machado, M.V., Nascimento, S.M., Duarte, C.R. & Barrozo, M.A. (2017). Boundary conditions effects on the particle dynamic flow in a rotary drum with a single flight. Powder Technol., 311, 341–349. DOI: 10.1016/j.powtec.2017.01.076.
- 24. Liu, J., Sysyn, M., Liu, Z., Kou, L., Wang, P. (2022).Studyin g the Strengthening Effect of Railway Ballast in the Direct Shear Test due to Insertion of Middle-size Ballast Particles. J. Appl. Comput. Mech. 1-11. DOI: 10.22055/jacm.2022.40206.3537.
- 25. Mahdavy, S., Norouzi, H.R., Jordan, C., Haddadi, B. & Harasek, M. (2022). Residence Time Distribution of Non-Spherical Particles in a Continuous Rotary Drum. Processes, 10(6), 1069. DOI: 10.3390/pr10061069.
- 26. Liu, X. Jiang, J. (2004). Mass and heat transfer in a continuous plate dryer. Drying Technol. 22(7), 1621–1635. DOI: 10.1081/DRT-200025619.
- 27. Schlünder, E.U. (1984). Heat transfer to packed and stirred beds from the surface of immersed bodies. Chem. Engin. & Proces. Proces. Intensific. 18(1), 31–53.
- 28. Keey, R.B. (1991). Drying of loose and particulate materials. CRC Press.
- 29. Wu, Guorong, Zhanfei, Zuo, and Yanggui, Li. (2023). “Selection of relative DEM time step for modelling fast fluidized bed of A-Type FCC particles.” Symmetry 15.2, 488.
- 30. Wu, Guorong, Yanggui, Li, and Muhammad, Israr. (2023). “Improvement of relative DEM time step range in fast fluidization simulation of Type-A FCC particles.” Processes 11.4, 1155.
- 31. Liu, X. & Jiang, J. (2004). Mass and heat transfer in a continuous plate dryer. Drying Technol. 22(7), 1621–1635. DOI: 10.1081/DRT-200025619.
- 32. Zhang, J.J., Yang, D.C. & Li, J.R. (2011). Discussion on blade design of continuous plate dryer. Chem. Engin. (China), 39(3), 2. DOI: 10.3969/j.issn.1005-9954.2011.03.004.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-92f5f679-db30-432a-b54d-1c62f692bcd4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.